
LEMUR

USER GUIDE

2

Table	 of	 Contents	

Chapter	 1	 -‐	 Welcome	 5	
Chapter	 2	 -‐	 Concepts	 6	
2.1	 Lemur	 Editor	 6	
2.2	 Projects	 6	
2.3	 Interfaces	 6	
2.4	 Modules	 6	
2.5	 Objects	 7	
2.6	 Variables	 8	
2.7	 Scripts	 8	
2.8	 OSC	 8	
2.9	 MIDI	 9	
2.10	 Lemur	 Daemon	 9	
2.11	 Targets	 9	

Chapter	 3	 –	 Connection	 &	 Setup	 10	
3.1	 Wi-‐Fi	 MIDI	 or	 OSC	 10	
3.2	 USB	 MIDI	 (CoreMIDI)	 10	
3.3	 Connection	 Problems?	 10	

Chapter	 4	 -‐	 Software	 Installation	 11	
4.1	 The	 Lemur	 Daemon	 11	
4.2	 The	 Lemur	 Daemon	 on	 Mac	 OS	 X	 11	
4.3	 Windows	 Install	 12	
4.4	 The	 Lemur	 Daemon	 on	 Windows	 12	

Chapter	 5	 -‐	 Introducing	 the	 Lemur	 Editor	 14	
5.1	 Overview	 14	
5.2	 Header	 15	
5.3	 Lemur	 Panel	 16	
5.4	 Creation	 Panel	 18	
5.5	 Project	 panel	 20	
5.6	 Script	 Panel	 22	
5.7	 Objects	 Panel	 24	
5.8	 Mapping	 Panel	 26	
5.9	 Settings	 Menu	 27	

Chapter	 6	 -‐	 First	 Steps	 29	
6.1	 Connecting	 Lemur	 29	
6.2	 Creating	 an	 Interface	 30	
6.3	 Creating	 Objects	 31	
6.4	 Saving	 your	 Project	 32	
6.5	 Lemur’s	 memory	 for	 Projects	 33	
6.6	 Changing	 Object	 Appearance	 34	
6.7	 Groups	 34	
6.8	 Configuring	 Object’s	 Behaviors	 37	
6.9	 Using	 Containers	 40	
6.10	 Import	 and	 Export	 of	 Modules	 45	

Chapter	 7	 -‐	 Mapping	 46	
7.1	 Setting	 up	 MIDI	 messages	 46	
7.2	 Simple	 MIDI	 mapping	 examples	 48	
7.3	 OSC	 52	
7.4	 Trigger	 Modes	 53	

3

Chapter	 8	 -‐	 Targets	 Setup	 54	
8.1	 Lemur	 Daemon	 Targets	 54	
8.2	 Lemur	 Daemon	 Targets	 Setup	 Example	 55	
8.3	 OSC	 Targets	 58	

Chapter	 9	 -‐	 Going	 further	 with	 the	 Lemur	 Editor	 60	
9.1	 Control	 your	 Objects	 with	 your	 Objects	 60	
9.2	 Making	 your	 own	 Object	 Variables	 62	
9.3	 Using	 Vector	 Variables	 64	
9.4	 Using	 Custom	 MIDI	 Messages	 66	
9.5	 Bidirectional	 Control	 68	
9.6	 Defining	 and	 Using	 Functions	 69	

Chapter	 10	 -‐	 Introducing	 Multi-‐line	 Scripts	 71	
10.1	 Creating	 a	 Script	 71	
10.2	 Script	 Execution	 72	
10.3	 Script	 Variables	 74	
10.4	 Attributes	 75	
10.5	 Built-‐in	 Functions	 and	 Operators	 76	
10.6	 Examples	 76	
10.7	 Color	 Coding	 in	 Scripts	 80	

Chapter	 11	 -‐	 Advanced	 Scripting	 81	
11.1	 Conditional	 statements	 81	
11.2	 Loops	 83	
11.3	 Return	 85	

Chapter	 12	 -‐	 Object	 Reference	 87	
12.1	 Breakpoint	 87	
12.2	 Container	 90	
12.3	 	 Custom	 Button	 91	
12.4	 Fader	 93	
12.5	 Knob	 96	
12.6	 Leds	 99	
12.7	 Menu	 101	
12.8	 Monitor	 102	
12.9	 MultiBall	 104	
12.10	 MultiSlider	 108	
12.12	 	 Pads	 110	
12.13	 Range	 113	
12.14	 RingArea	 115	
12.15	 SignalScope	 117	
12.16	 SurfaceLCD	 119	
12.17	 Switches	 120	
12.18	 Text	 122	

Chapter	 13	 -‐	 Parser	 Reference	 123	
13.1	 Vectors	 and	 Singletons	 123	
13.2	 Lemur	 Internal	 clock	 124	
13.3	 Built-‐In	 Battery	 Variable	 124	
13.4	 Built-‐In	 Accelerometer	 Variable	 124	
13.5	 Built-‐In	 Time	 Variable	 124	
13.6	 Built-‐in	 current_interface	 Variable	 125	
13.7	 Built-‐in	 midi_clocks	 Variable	 125	
13.8	 Arithmetic	 Functions	 127	
13.9	 Object-‐related	 Functions	 128	

4

13.10	 Scripting	 Output	 Functions	 131	
13.11	 Vectorial	 Functions	 132	
13.12	 Trigonometric	 functions	 134	
13.13	 Operators	 135	

Chapter	 14	 -‐	 MIDI	 Mapping	 Message	 Reference	 137	
14.1	 Note	 Off	 137	
14.2	 	 Note	 On	 137	
14.3	 Key	 Pressure	 (Polyphonic	 Aftertouch)	 138	
14.4	 Control	 Change	 138	
14.5	 Program	 Change	 138	
14.6	 Channel	 Pressure	 139	
14.7	 Pitch	 Bend	 139	
14.8	 System	 Exclusive	 139	
14.9	 Song	 Position	 139	
14.10	 Song	 Select	 140	
14.11	 Bus	 Select	 140	
14.12	 Tune	 Request	 140	
14.13	 Timing	 Tick	 140	
14.14	 Start	 Song	 140	
14.15	 Continue	 Song	 141	
14.16	 Stop	 Song	 141	
14.17	 Active	 Sensing	 141	
14.18	 System	 Reset	 141	

Appendix	 I	 –	 Keyboard	 Shortcuts	 142	
Appendix	 II	 –	 Object	 Attributes	 143	
Appendix	 II	 –	 Object	 Variables	 144	
Appendix	 III	 –	 Parser	 Quick	 Reference	 145	
Appendix	 IV	 –	 MIDI	 Quick	 Reference	 147	
Appendix	 V	 –	 Specifications	 149	
Changelog	 150	

Lemur User Guide v.3.1 April 2012

5

Chapter 1 - Welcome
Thanks for choosing Lemur, a groundbreaking iOS app for controlling music and media
applications. Its unprecedented modularity will forever change the way you compose, perform,
produce and, in more general terms, interact with your work environment.

What Lemur is . . .

• Lemur is a controller: its purpose in life is to provide hands-on control over software
running on a computer, or other connected devices such as samplers, synthesizers etc.

• Lemur uses two communication protocols: MIDI and Open Sound Control. Software or
hardware must comply with at least one of those protocols to be controlled by Lemur.

• MIDI hardware can be connected directly to an iOS device running Lemur through a
CoreMIDI compatible device such as iConnect MIDI or Alesis iO Dock, or via the Apple
Camera Connection Kit and a compliant USB-Midi device.

… and what it is not.

Lemur does not produce any sound by itself. There is plenty of wonderful software and hardware
out there perfectly doing that job. Lemur is here to make the use of that software and hardware
more efficient, intuitive and hands-on. It is not restrained like conventional hardware.

About this Manual

Considering the great variety of applications that Lemur can control, it would be nearly impossible
to exhaustively detail here all the interfacing possibilities. Therefore, instead of providing step-by-
step tutorials for every single piece of software you might use, this manual focuses on the general
features and concepts one needs to master in order to work with Lemur.

Besides this manual, there exists a host of external material, including additional documentation,
Projects and videos meant to make your introduction to Lemur work as smooth as possible.
Documentation improvements and revisions are ongoing. Be sure to check out the MIDI Kinetics
website.

6

Chapter 2 - Concepts
2.1 Lemur Editor
Lemur is provided with a dual-platform (Mac OS X and Windows) interface design utility,
the Lemur Editor. Download the latest version of Lemur Editor at the MIDI Kinetics website.

One of Lemur’s main characteristics is that you can populate the screen with as many different
virtual objects as you need. This way, you can design the interface layouts that will perfectly fit
both your application and your hands.

2.2 Projects
The Lemur Editor lets you open or create complete control Projects for Lemur. All Project files the
Lemur Editor produces can be stored on your computer’s hard drive as .jzml files. Projects can also
be stored in your iOS device’s internal memory after being transferred there by the Editor or via
iTunes app file management. You can access the Lemur Project browser at the top of the Lemur
Settings menu on your iPad or iPhone.

2.3 Interfaces
A Project contains your Interface (also called Pages when there are several), which can each contain
multiple Objects, which can also be organized in Containers if desired. The number of Interfaces
and Objects is limited only by memory, which gives you plenty of room for your creations.

The figure above shows a typical Lemur project, comprised of three different interfaces or pages.
Once a Project is loaded on your iOS device, the different interfaces can be browsed with the grey
tabs at the top of the screen. Tap a tab to jump to that interface.

2.4 Modules
A Module is a set of reusable interface elements saved as JZLIB files. A module can feature objects,
containers and interfaces. Additionally, you can import pre-built parts of a project as Modules.
Modules are available from Liine’s website. You can also create your own library of reusable items.
Indeed, any part of a Lemur Project can be exported as a Module for future use in other Projects.
Thanks to this feature you never have to develop the same thing twice. Just save your building
blocks as Modules to produce a growing library of re-useable, object-oriented tools.

7

2.5 Objects
Objects are the main message generators of Lemur: they provide the values you control with your
fingers. There is a multitude of different Objects available that all have their special capabilities:

 Breakpoint LemurMenu

 Container Monitor

 CustomButton MultiSlider

 Fader Pads

 MultiBall Range

 Knob RingArea

 SurfaceLCD SignalScope

 Leds Switches

 Text

Objects can be arranged on screen at variable sizes and the functionality that you want can be
added to them via a simple yet comprehensive menu-driven system of attributes and variables., or
through multi-line scripting which allows more complex behaviors to be programmed.

 Auto-mapping of new Objects to Continuos Controllers or MIDI Notes allows for quick and easy
layout of almost instantly functional interfaces.

Objects may also be created and modified in real-time via OSC messaging allowing suitable OSC
programs to manipulate and modify your interface.

Objects are capable of bi-directional communication and can control as well as be controlled.	

8

2.6 Variables
A Variable is simply a storage location for some information and an associated name for
referencing that value. The stored value may be constant or it may change over time inresponse to
user input, programming or external control. The Variable name is used to get or set the value.

Most Objects have their own set of Variables that reflect the Objects’ states, and change when you
touch them with your fingers. A Fader’s x Variable reflects the position of its cap for example, or
that of a Switch its on/off state. All these Variables can also be modified by external software, by
Scripts or by other Objects dwelling in the Project.

In addition to these Built-in variables, the Lemur Editor lets you create your own User-defined
Variables, which you can equate to your own mathematical or logical expressions.

A Variable can be defined locally, living in a specific Object and accessed from the outside through
its address. A Variable can also be defined globally for a Project, enabling multiple Objects to use
its values directly. Variables can also be declared within the scope of a running Script.

Variables can be multi-dimensional too. A Knob, for instance, has only one Variable defining its
output with a single number, while A MultiBall Object has three Variables: the X and Y positions of
the balls, and a third Z Variable representing their Brightness. The MultiBall’s Variables are Vectors
with as many components as there are balls defined for the Object.

The built-in Time Variable deserves a special mention. It presents the time in milliseconds since
Lemur was switched on. Combined with Lemur’s functions and mathematical operators, it can
produce a great variety of time-varying number sequences.

2.7 Scripts
Lemur has a C-style scripting language that allows you to program additional functionality into
your interface. Scripts can be used to instruct Lemur to perform specific tasks at specific times, or in
response to user interaction, program state or external input.

From simple actions such as changing a MultiSlider colour when a Switch is pressed, to complex
actions such as commanding a Multiball’s balls to follow set trajectories. Lemur has a rich set of
built-in functions, including the famous Physics engine, and of course, you are able to define your
own expressions and functions to extend its capabilities. The possibilities are endless.

2.8 OSC
Lemur is compliant with the Open Sound Control protocol, a network-based standard with
significant advantages over MIDI: low latency, higher data capacity, 32-bit numerical precision,
flexibility and easy set-up. Supported by a growing number of high profile applications (Max/MSP,
Logic 9, Monome, Reaktor, Circle, Modul8, Resolume Avenue…), OSC has opened a new era in the
field of real-time control and human-machine interface.

OSC is an open-ended, dynamic URL-styled symbolic naming scheme capable of using symbolic
and high-resolution numeric data. Pattern-matching can specify multiple recipients of messages.
OSC gives you great flexibility in the kinds of data and hardware you can communicate with.

9

2.9 MIDI
Naturally, Lemur also complies with the MIDI protocol and can transmit and receive all MIDI
messages. Any of these messages can directly be assigned to any Built-in or User-defined Variables,
sent through scripts, or activate a script execution upon reception by Lemur.

MIDI can be transmitted wirelessly to the Lemur Daemon on any accessible computer, via Network
MIDI sessions. Wired MIDI may be sent via iPad compatible MIDI docks or via Class compliant MIDI
interfaces attaches with an Apple Camera Connection Kit.

MIDI may also be sent to compliant Core-MIDI apps running on your iPad or iPhone.

2.10 Lemur Daemon
Lemur Daemon is a little helper application running in the background on your computer. It
handles the MIDI data flow between Lemur and the MIDI ports installed on the computer.

The Lemur Daemon automatically scans all available MIDI ports on the computer, be they physical
or virtual, and makes them available to Lemur(s) connected to the network.

On Mac, the Lemur Daemon also creates its own set of virtual ports, the Daemon Inputs and
Outputs, which are accessible in your applications’ MIDI settings.

On PC, third party virtual ports such as those offered by loopMIDI, loopbe or MIDI Yoke are needed
in order to link to the Lemur Daemon and use MIDI with Lemur.

2.11 Targets
A Lemur Daemon Target consists of a pair of MIDI Inputs and Outputs.

An OSC Target is characterised by its IP address (or hostname) and its port number.

No matter how complex your setup may be, you can control everything from a single Interface on
Lemur by individually assigning the different Variables to different Targets, or by using Scripts
containing Output functions.

The networkability of Lemur endows it with the unique capacity to simultaneously control several
applications running on the same computer, or even to control several pieces of software launched
on different computers. Each application or device controlled by Lemur being represented by a
“Target”. Lemur features eight Lemur Daemon Targets and eight OSC Targets.

Note: You can connect to the MIDI ports of any computer on the network provided they have a
Lemur Daemon running. Use the Lemur Daemon Targets settings page on Lemur to get a list of
running Lemur Daemon’s on the network and to connect to specific MIDI ports on the respective
machines. You can also communicate with any computer on your network using OSC.

10

Chapter 3 – Connection & Setup
Connection and setup of the Lemur app is simple and easy. As a reference, basic instructions and
recommendations follow. If you get stuck, be sure to check out the MIDI Kinetics website for further
support.

3.1 Wi-Fi MIDI or OSC
• Make sure that Bluetooth is off on both your iOS device and the laptop.

• Ad-hoc Wi-Fi connections are recommended over connections through a router.
Latency and jitter will be much lower via an Ad-hoc Network.

• OSC communication is only possible over Wi-Fi.

• Lemur Daemon must be running to use MIDI over Wi-Fi.

3.2 USB MIDI (CoreMIDI)
• USB MIDI is the lowest latency way to connect Lemur.

• We recommend using iConnect MIDI, although many other devices will also work. Be
sure to familiarize with the specifications of your MIDI interface. The Alesis iO Dock, for
example, blocks all SYSEX messages.

• The Apple Camera Connection Kit and a compliant MIDI interface may be used.

3.3 Connection Problems?
• Lack of connectivity could be due to a number of factors. Carefully following this list of

actions should remedy the problem:

• Check that your iPad is connected to the same network as the computer. Check that you
have the latest version of Lemur, Lemur Editor and Lemur Daemon installed and running.

• Check that Bluetooth is turned off on the iPad. Close and restart the Lemur Daemon app.
To quit Lemur on the iPad/iPhone, kill the app from the multitasking bar. Restart Lemur.

• Check that you don’t have any Firewalls blocking OSC communications.

• Make sure no other applications are using ports 8000-8003 on your iPad or iPhone. Also
make sure those ports are not busy on your computer with, for example, a Network
MIDI Session on Mac, rtpmidi session on Windows or an application such as Max or
Osculator.

11

Chapter 4 - Software Installation
4.1 The Lemur Daemon
For Lemur to become fully functional, you will need to run the latest Lemur Installer package
downloaded from the MIDI Kinetics website to install the necessary software on your computer.

Lemur Installer contains the Lemur Editor, for creating and transferring your Projects to Lemur,
and the Lemur Daemon, a small application that keeps running in the background, and is required
to handle MIDI communication and transmit keyboard and mouse commands from Lemur.

4.2 The Lemur Daemon on Mac OS X
You can find the Lemur Daemon on the Menu Bar of your MacOS X desktop;

It doesn’t appear in your Dock while it’s running,.

A click on the Lemur Daemon opens a menu with two entries:

• Setup Lemur Daemon opens the MIDI connection browser of the Daemon. Please have a
look at Chapter 8 “Targets Setup” for details.

• Quit shuts the Lemur Daemon down.

Please note that the Lemur Daemon must be running if you want to use MIDI with Lemur.

Use the small X in the upper left corner of the MIDI port browser for closing it without shutting the
Daemon down

If you want the Daemon to be automatically started, enable the Launch Daemon at startup
checkbox.

12

On Mac, the Lemur Daemon automatically creates 8 virtual MDI Inputs and 8 virtual MIDI Outputs
for you to link with Lemurs. They are conveniently named Daemon Input and Daemon Output.
Once connected to the Ins and Outs of Lemur, you can use to communicate with any MIDI
application on your Mac.

4.3 Windows Install
Download the latest software from the web, double-click the exe file and follow the instructions.

By default the Installer will create a folder named Liine in your Program Files (C:\Program
Files\Liine). Click on Browse to select a different folder.

4.4 The Lemur Daemon on Windows
By default the Lemur Daemon will be loaded automatically at boot time of the computer and
appear in the System Tray on your desktop.

A click on the Lemur Daemon icon opens a menu with two entries:

• Setup Lemur Daemon opens the MIDI port browser of the Daemon. Please have a look at
chapter 8.2 for details.

• Quit shuts the Lemur Daemon down.

Please note that the Lemur Daemon must be running if you want to use MIDI with Lemur. Use the
small X in the upper left corner of the MIDI connection browser for closing it without shutting the
Daemon down.f you don’t want the Daemon to be automatically started, uncheck the Launch
Daemon at Startup flag and the next time you boot your computer the Daemon won’t be started.

On Windows, you will need third-party virtual MIDI ports, such as loopMIDI or loopbe, in order to
link your applications to the Lemur Daemon. Both drivers are freeware and easily downloadable
from the Internet.

In the software application you want to control with Lemur, choose the virtual MIDI port to which
Lemur is connected. As you can also have bi-directional communication via MIDI - i.e. the MIDI-
enabled software can also control Lemur Objects - use a second, distinct virtual port to make the
reverse connection to Lemur. Using a distinct port prevents MIDI feedback problems.

13

Once you’ve connected them to the Ins and Outs of Lemurs, you can use them in any MIDI
application on your PC.

14

Chapter 5 - Introducing the Lemur Editor
Double-click the Lemur Editor application icon to start editing. All editing and building of
Interfaces is done via the Lemur Editor software. Here you create, modify and save your Projects, or
simply open them in order to transfer them to Lemur.

5.1 Overview
The Lemur Editor’s Workspace consists of seven main areas:

1. Header: provides icons for basic functions.

2. Lemur panel: this is where the virtual objects are placed to build Interfaces.

3. Creation panel: contains the Palette and Library tabs.

4. Project panel: provides a hierarchical view of your current project.

5. Script panel: for defining an expression or a multi-line script.

6. Objects panel: for defining the selected object’s Properties and Behavior.

7. Mapping panel: for assigning OSC or MIDI messages to your object’s variables.

It is useful to know that the layout of the Lemur Editor Workspace can be customized to suit your
preferences. Just grab a panel by its title bar, and drag it to another spot on the Workspace.
Everything can be rearranged.

15

5.2 Header
The Header section provides a series of icons that allow quick and easy access to some of the
Lemur Editor’s basic functions.

1. New Project: Creates an empty Project.

2. Open Project: Presents you with a dialog for opening Projects from your file system.

3. Save Project: Opens a dialog for saving your current Project to the file system. Choose an
appropriate folder to store your Projects.

4. Import Module: Opens a dialog for importing a Module into the currently opened Interface at
the level of hierarchy you choose.

5. Export Selection: Exports the selected group of objects as a Module and save it to the file
system.

6. Copy: Copies selection to clipboard.

7. Cut: Cuts selection to clipboard.

8. Paste: Pastes from clipboard.

9. Undo: Rolls back an unlimited number of Lemur Editor commands.

10. Redo: Redo last command.

11. Resolution Menu: Opens a menu of the possible Project resolutions. Projects open at the
resolution they were created or saved at. Changing the Resolution of an open Project will present a
‘Change Resolution’ dialog box allowing you to choose whether to automatically stretch all
objects to the new Project size. Some manual editing may still be necessary and Object minmum
sizes are enforced

12. MIDI Mapping: Opens a list of the current Projects MIDI mappings.

13. Synchronization: When the Lemur Editor is connected to a Lemur, any changes to Objects’
states on Lemur will also be reflected in the Lemur Editor. This can be very handy for saving a
Project including the state of all objects.

14. Connection: Opens a dialog listing the accessible Lemurs on the network for connecting the
Lemur Editor to a Lemur and transferring the current project.

15. Settings: Opens the Lemur Editor settings menu.

16

5.3 Lemur Panel
Lemur Panel is the canvas on which your Objects are laid down and assembled to construct
Interfaces. In terms of size, it replicates that of Lemur’s screen (1024x724 for iPad, 480x276 for
iPhone and 800x600 for Legacy). Lemur panel always displays the Interface currently selected in
the Project panel (see corresponding section below).

Objects are created either by dragging and dropping the desired icons from the Palette, or by
clicking on the Create Object icon underneath the Project panel. Fetch the Objects with your
mouse and displace them to the ideal spot. You will notice that when your mouse hovers over an
Object, its corners highlight. Simply grab a corner and move the mouse to resize it.

Multiple Objects can be selected by holding the Shift key and clicking on them one after the other.
You can also drag a square around them to get the same effect. By clicking an Object again while
still holding the Shift key you remove it from the selection.

There are two different modes available concerning interaction with Objects in the Lemur Editor. In
default Edit mode, you can’t change the state of the Objects laying on Lemur panel. In Run mode,
you can use your mouse to change the state of the Objects, as if you were using your fingers on
Lemur. Simply press “E” on your computer keyboard and hold it to switch to Run mode. As long as
you hold the key you can use your virtual Interface. This comes very handy when debugging your
work without having Lemur connected.

17

The Editing Area also features a contextual menu which is displayed by right-clicking (PC)/ ctrl-
clicking (Mac) on an Object. It offers an additional way of executing commands such as Copy or
Export:

Objects can overlap in the Interface. The rule of thumb is that the Object created last will cover
older Objects. The commands Bring to Front or Send to Back change the order of Objects in a
“pile”. Some Objects (like the Monitor) can have a transparent background, leading to various
possibilities for labels and captions. When the Transparency flag is activated, only parts of the
Object will remain opaque and any Objects lying underneath can be seen.

Note that a lot of the commands and functions of the Lemur Editor can also be controlled via
keyboard shortcuts. The shortcuts are displayed in the Tool tips that pop up when your mouse
pointer hovers above the respective commands. Please refer to Appendix I for a complete list of
shortcuts.

18

5.4 Creation Panel
The Creation panel consists of 2 tabs: the Palette, for creating Objects by dragging them from the
Objects Icons lists and dropping them on Lemur panel, and the Library, for dragging modules to
and from Lemur panel.

5.4.1 Palette

The Palette tab displays the built-in Lemur Objects. To create an Object, select an icon and drag it
anywhere on Lemur panel. Double-clicking creates the Object in the top left corner of the screen.

As we’ll see later, you can also create an Object by clicking on the Create Object icon underneath
the Project panel, or pressing Command/Control+Shift+O. The choice is yours.

5.4.2 Library

The Library tab displays the user-installed Lemur Modules. The Library works on the same
principle, however before being able to use the Library, a file path for your module folder must be
specified in the Lemur Editor Settings window (click on the top-right corner’s icon).

19

When you’re done, the modules present in your folder should be listed and available to be dragged
and dropped to the Lemur panel.

This also works the other way around. Any Object selection on Lemur panel can be dragged to the
Library panel by holding the alt key and be directly saved as a module.

20

5.5 Project panel
The Project panel displays all elements of the current Project in a hierarchical tree structure.

Click on the small disclosure triangles in front of the symbols or double-click on a symbol to
expand or collapse the next deeper level of the tree.

The various entries in the Project Browser are color-coded as follows:

• Red dots stand for the Object’s main parameters (x for a Fader; x, y, z for a MultiBall, etc.)

• Orange dots depict Custom MIDI messages or Scripts created by the User.

• Green dots indicate User-defined Variables.

• Blue dots indicate User-defined Functions.

• Grey dots indicate internal Functions

 The green folder at the top of the tree structure represents the current parent Project
Yellow folders represent the different Interfaces (pages) contained in the Project.

21

These yellow Interface folders contain the Objects, depicted by the small grey cubes, together
with their built-in Variables, and any additional User defined Variables, Functions, Custom Midi
messages or Scripts, all represented by colored dots. Note that in some instances it may be
necessary to create User defined Variables, Functions, Custom Midi messages or Scripts directly at
the root of the Project folder so that they can be used globally, but more will be said on this later.

The small checkboxes play an important role in Lemur Projects. If a box is checked, it means that
the MIDI or OSC messages associated with the entry, being a single variable or a whole Object, are
transmitted to the Targets. In the case of a Script, the checkbox can be used to activate or
deactivate the execution of that Script.

There might be at least two reasons for not sending the output value of a particular object. One
would be if you were using an Object merely to display information coming from your computer.
The MultiBall object could represent the state of something in an application for instance.

The other reason could be that you transmit the data from the Object to your computer via a User-
defined Variable containing a mathematical expression. In this case the built-in Variable (e.g. the x)
is only referenced by the Expression in another Variable. This is often used to scale values into a
more appropriate range. We’ll learn more about this technique later.

Use the five Create command iconss to create new Interfaces, Objects, Expressions, Custom MIDI
mappings, and Scripts.

To the right, the Memory Display shows you the percentage of Lemur’s memory that your Project
will occupy when it is instantiated, it is not the size of the Project itself. This is for reference only.

22

5.6 Script Panel
The Script panel is multi-purpose. It allows for the single-line definition of User-defined Variables
or Functions created with the Create Expression icon underneath the Project Browser. For
instance, imagine we need to derive a logarithmic value from a Fader’s built-in x Variable. Click on
the Create Expression icon and name it appropriately:

Then type in the mathematical expression to define your own Variable with respect to the original
x variable:

Notice here that we’ve used a log function. This is one of the many handy built-in functions,
available to make your life easier when building complex Interfaces. Please refer to the Parser
reference on Chapter 13 for insights into built-in functions and operators.

This User-defined Variable we just created is then displayed in the Project panel and ready to be
used.

The Script panel can also be used to enter a single-line expression for some User-defined Object
parameters, typically the Light or Value parameters:

23

Finally, the Script panel also allows for the multi-line coding of a Script created with the Create
Script icon. Multi-line scripts can be used, in conjunction with a set of powerful built-in functions,
to instruct Lemur to perform specific tasks at specific times. A typical application of this powerful
feature could be the real-time manipulation of an object’ attributes, such as its dimensions, color
or physics. A basic example would be to instruct a Switch to activate a Multiball’s grid, or a Text
object to change its content upon reception of an OSC or MIDI message.

Please refer to Chapter 11 and 12 for more information about multi-line scripts.

24

5.7 Objects Panel
The Objects panel contains two tabs: the Properties and Behavior tabs. The Properties tab
provides access to the basic properties of Lemur’s Objects, while the Behavior tab concerns their
physical responses. Details of all the Objects’s parameters can be found in the Object Reference
section of this manual.

5.7.1 Properties Tab

In essence, the Properties tab deals with the appearance of the Objects such as their color for
instance. This is also where you name an Object (up to 64 characters) or type in its size and position
with greater precision if you need to. Additional parameters may vary depending on the type of
Object selected.

By default, the Color parameter of your Objects is set through a 2D color picker, which appears
when you click on the square color sample:

The grid to the right of the color picker is for storing your favorite colors. Just drag the large color
sample bar underneath the color picker to a slot in the grid, and that color will be available for
direct selection in the grid next time you use the color picker.

Note that the small square color sample next to Color can be directly dragged to other Objects
present on Lemur panel to colour them with the exact same colour.

 If needed, the colour selection mode system can be changed by right-clicking (PC) or ctrl-clicking
(Mac) on the colour picker:

25

Choosing Grayscale for instance will leave you with a black and white selection tool.

Choosing RGB leaves you with a classical RGB additive color selection tool, in which the red, green
and blue sliders are added together to produce the desired color.

HSV stands for hue, saturation, value, where the hue slider lets you pick up the “pure” color,
saturation the perceived “intensity” and value the “lightness”.

Choosing Hue leaves you with the traditional, simple color swatch tool:

26

5.7.2 Behavior Tab

The Behavior tab deals with the physical characteristics of
the Objects. Here you find parameters like friction and
tension and the different physics modes of the Object.

5.8 Mapping Panel
5.8.1 OSC Tab

On the OSC Panel you can define the routing of
the different Variables to OSC Targets.

You have a menu for the Variables and one for
the eight possible OSC Targets.

This panel also serves for controlling Lemur
objects via OSC.

5.8.2 MIDI Tab

The MIDI panel lets you assign MIDI messages
to your Variables and route them to the MIDI
Targets.

This panel also serves for controlling Lemur
Objects via MIDI.

27

5.9 Settings Menu
5.9.1 Editor Tab

The first panel of the Editor tab deals with two basic settings. The first is the Display Hints
checkbox: when active, the description of the interface item alongside with the eventual keyboard
shortcut is displayed when you hover with your mouse pointer over the various interface elements.

The second is the path selection for the Creation panel’s Library. Here you tell the Lemur Editor
where to look for your Modules collection, so that afterwards you may simply drag and drop them
to Lemur panel.

5.9.2 Lemur Tab

The second panel of the Settings window, called Lemur, deals with two other settings. The first is
the Automap checkbox: when active, each new Object will be automatically mapped to the
chosen MIDI Target and Message:

The Local IP setting lets you choose which of your computer’s local IP addresses the Lemur Editor
will use for connecting to Lemur. This menu may contain multiple listings for the different
networks you have connected to. The IP of the currently connected Lemur is also displayed.

28

5.9.3 OSC Tab

The third panel of the Settings window lets you set your OSC Targets provided the Lemur Editor is
connected to Lemur. This panel mirrors the OSC Targets settings page on Lemur, and either can be
used to configure your OSC Targets.

Just fill in the IP addresses of the Targets you want to communicate with. If it’s a piece of software
running on the same computer as the Lemur Editor, click the My IP button, this will automatically
fill in the IP of the currently used interface.

If there is no connection, the Lemur Editor states this and does not show any OSC settings:

29

Chapter 6 - First Steps

6.1 Connecting Lemur
The first step naturally consists in opening the connection between Lemur Editor and Lemur. To do
so, click on the Connect button on the toolbar, which should result in opening the following
window:

Provided your network is set up correctly (see Chapter 3 and Appendix I), the connected Lemurs
should be listed with their IP addresses and port numbers. You can select a Lemur on the list and
click Connect to establish a connection. A double-click on the list entry does the same trick.

If you just connected Lemur or had it switched on shortly before, wait a few seconds for the list to
update.

Note : Be careful! If you have a Project residing on Lemur and connect to it with a different Project
open in the Lemur Editor, the one on Lemur will be overwritten. A connection always automatically
transfers the currently opened Project to Lemur.

The IP field below the list allow manual entry and remembers the last setting of Lemur connection.
It can also be handy for connecting through a proxy.

The current connection status can be seen from the displayed Connection icon. A Play button
means there is no Lemur currently connected. If you connect to a Lemur the Stop button appears
and a click leads to a disconnection of Lemur.

30

6.2 Creating an Interface
Now that Lemur and Lemur Editor are connected together, let’s create our very first interface. To
do so, just click on the New Interface button, located below the Project panel.

 This opens a small dialog asking for the name of the new Interface. You can type in any name you
like. Click OK and your new Interface is created.

Both Lemur panel and Lemur screen suddenly turn black. There is nothing to worry about: we just
created a blank interface. Notice that the new interface appears as a yellow folder in the Project
panel, as shown below.

 Alternatively, beginning a new project simply by creating / dropping an Object on Lemur panel
will automatically create a Interface named “Default”.

Your project may contain more than one interface; simply create and name them as required.
Interfaces are arranged alphabetically within the Project. When a Project contains multiple
interfaces the separate pages are indicated by grey tabs at the top of the iPad screen. Individual
interfaces are labelled according to their name in the Project.

The individual interfaces may be selected by tapping the appropriate tab, programmatically via the
selectinterface(index) built-in function or via OSC commands.

31

6.3 Creating Objects
Now to start filling this empty space, you can either use the Palette and drag and drop the desired
Object onto Lemur panel, or click on the Create Object button located at the bottom of the Project
panel. Clicking on the Create Object button opens the Create Object window, listing the available
Object types by alphabetical order:

To create a new object, we just have to choose one among the list, to give it a name of our liking
then to click the Ok button. For our first experience with interface building, I would suggest to start
with the most common: the Fader. Once created, our newbie Fader appears on the upper left
corner of both the editing window and Lemur’s screen. It’s also referenced in the Project panel.

32

When you touch the Fader on Lemur, you will notice that the actions are not mirrored in Lemur
Editor.

Click the Synchronization button to change this. Now everything you do on Lemur will be
reflected on your computer. This helps if you have to save a project in a defined state for future use.

Already bored with your lonely fader? That’s no problem; let’s repeat the very same procedure
described above and create a Switch and a MultiBall Object.

Not surprisingly, these will appear on both the editing window and Lemur screen. And as good
news never come alone, the two objects are also listed in the Project panel, sorted in alphabetical
order.

6.4 Saving your Project
You might want to keep this work of art ready for future loading and editing. Just hit the Save
button in the toolbar and give a name to your project.

All files the Lemur Editor produces, both Project files or Modules, reside on your hard disk, Project
files with the extension .jzml and Modules with the extension .jzlib.

Now, let’s open our project again, by hitting the Open button. You might have noticed that the
Connect Button has changed is status. That’s normal behavior. When opening a new Project in
Lemur Editor (either by loading an existing one from disk or by creating an empty Project), the
connection to Lemur is dropped.

If you connect Lemur again, the Project loaded in Lemur Editor will automatically be transferred to
Lemur, overwriting the one displayed on Lemur.

Make sure to save your work in the Lemur Editor before closing the Project.

Once your Project is transferred to Lemur, you may close the Lemur Editor and use Lemur to
produce OSC data. It will happily connect to all defined OSC Targets. Remember that if you use
MIDI in your Project, the Lemur Daemon has to run as it is needed to translate the OSC data from
Lemur into MIDI messages.

33

6.5 Lemur’s memory for Projects
Lemur has a memory for all the Projects you throw at it. You just have to tell it to remember them.
This frees you from always having to open the Lemur Editor when you just want to work with your
finished Interface.

In the app, go to the Settings menu and tap the Project list. It displays a list of Projects currently
stored in your Lemur’s memory.

We want to save the important project we have built, so we tap the Save command. You can then
enter a name for the project. You will see the project appear on the list. You can load a project by
tapping on it, or tap Edit if you need to delete a project.

34

6.6 Changing Object Appearance
First we are going to resize the Fader to have more space for our fingers. Grab the lower right
corner of the Fader and drag it down to make the Fader longer and maybe a bit wider too. Note
how the Width and Height Parameters in the Properties change as you do it, and vice versa: if you
type a value in one of the dimension fields, the fader will move and resize accordingly.

 Talking about the Properties tab, what about changing the colour of our fader? Sure, a yellowish
green can be nice, but what about a deep blue? Click on the color picker and pick a color.

Sometimes it’s a good idea to display the name of your Objects in the Interface. Click into the
Name field of the MultiBall’s Properties tab and change it. Then check the Label checkbox.

6.7 Groups
Now we want two Faders. We can do this with a simple Copy and Paste.

Right-click (Command-click for Mac) on the Fader and choose Copy from the context menu. Then
right-click on the background of Lemur panel and choose Paste from the menu. Those commands
are also available on the Toolbar, via shortcuts, or as an alternative, by holding the alt key and
dragging the mouse to the desired location.

Your Fader is duplicated. Grab it with your mouse and position it to the right of the first Fader.

35

Have a look at the Properties tabs of your Faders. The Lemur Editor automatically named the new
Fader “MyFader2” to avoid a name conflict. This is important, as the names are also used as
addresses of the Objects for OSC mapping and variable accessing. As a consequence, there cannot
be any identical names in any Lemur Project – except by protecting objects inside containers,
which we’ll cover later in this manual.

Of course you can also change the names by entering one of your choice into the Name field of the
Properties.

If you have several Objects lying on top of each other, the Lemur Editor provides a way to control
the layering order. A right-click on a selected Object opens a menu. Choose Bring to Front to
make the selected Object the topmost. Send to Back puts it to the bottom of the Object pile.

We now want to change the colour of the two Faders. As we already saw, we could do it by
changing every Fader on its own. But it’s tough to hit the exact same colour twice, so we’ll select
them both and simultaneously change their colours by dragging a square that touches both
Objects with the mouse.

36

Objects can also be grouped permanently via the context menu by right-clicking (command-
clicking for Macs) on the selected Objects and choosing Group.

This group command is also available on the Properties panel if several Objects are selected. Do
this for your Faders and every time you click on one of them both will be selected. Double-click on
your new Group to display the Properties panel. Note that since different kind of objects can
grouped together, only the properties common to all objects are displayed. Now dial in a nice
purple with the color picker. Both Faders now have the exact same color. If you want to ungroup
the Faders, click on the Ungroup symbol in the properties panel.

When you select several Objects or have them grouped, you’ll notice additional commands
appearing on the Properties panel that deal with layout and size of the Objects.

 The commands are:

• Align to Left, Align to Right

• Align to Top, Align to Bottom

• Make same Width

• Make same Height

They always refer to the Object you selected first in the group. These commands are of great help
when it comes to tidying up your Interfaces. Experiment a bit with those to get the hang, and
remember that the Undo command is at your disposal to roll back changes.

37

If you select three or more Objects (or have a
group of three or more), two additional
commands are available:

• Distribute horizontally distributes the
Objects evenly. The left- and rightmost Objects
are the boundaries for the line of Objects.

• Distribute vertically does the same, only
on the vertical axis.

6.8 Configuring Object’s Behaviors
Now, let’s glance at one of the most powerful feature of Lemur’s objects: their configurable
behaviors. Select the MultiBall object with the mouse, and look at its Behavior tab:

The Physics menu has three modes defining the behavior of the balls. When Physics is set to None,
the ball moves immediately to the position of your finger and stays there. It also follows your finger
around as you move it on the touch screen, and immediately stops when you lift up your finger.

Make sure the Physics menu is set to Interpolate, which should be the default setting.

Touch Lemur screen somewhere in the MultiBall, but not on top of a ball. The ball will not move to
your finger immediately but according to the setting of the Attraction parameter. Let’s modify

38

Attraction to make the ball react more slowly. Enter a value of 0.1. Experiment again with the Ball’s
reaction. It should follow your finger slowly.

Now let’s try the last behavior mode. Choose Mass-Spring from the Physics menu.

Change the Attraction value to 1.0 and the Friction to 0.2.

Try moving the ball now. It bounces off the “walls” and eventually slows down. The Mass-Spring
mode is similar to Interpolation, except that the ball has friction (or a lack of it), can bounce off
walls, and in certain cases, the ball may oscillate before coming to a complete rest. You can also
control the speed of the ball via the Speed parameter.

Physics parameters are great for producing complex time-varying values with little effort. We will
see later on that we can obtain even more enjoyable effects by controlling the Physics properties
with other objects.

As another example we create a MultiSlider Object with 5 sliders and name it SoLovely:

We then drag it to a free spot on the Interface, and make it bigger so we can interact easily with the
individual sliders.

By default the MultiSlider Object doesn’t display any physical behavior. The sliders simply follow
your fingers and stay where you leave them.

39

Now change to the Behavior panel and activate the Physic checkbox. Also, change the tension to
0.1 and the friction to 0. Now it’s a completely different story. If you move the sliders they will
continue to wiggle forever. They behave as if they are connected with springs and oscillate around
a centre value defined by the height parameter.

Again, we are only scratching the surface here. Please have a look at the Object Reference Chapter
for details about all Object Properties.

Let’s come back to our MultiBall Object. The Capture parameter on the Behavior tab has a great
influence on the possible finger actions. When you are inside of the Object’s boundaries, the
Capture mode doesn’t make any difference. But if you move the ball and leave the borders of the
Object, the control of the ball will stop when Capture is off. If Capture is on, the ball will continue
being tied to your actions. No matter if you move your finger across other Objects and even if you
switch to a different Interface, the ball will still cling to your finger and the finger has no effect on
other Objects. Just experiment a bit with the two modes and you will quickly get the hang of it.

The MultiBall Object is a complex critter. It also sports an ADSR+H envelope for its brightness
parameter or z Variable. You might be familiar with envelopes from using synthesizers. They
represent an easy way to produce defined parameter changes over time.

The MultiBall ADSR acts just like its cousins from the synthesis world. When you touch Lemur the
brightness of the ball will be faded in according to the Attack value, decay down to the sustain
level and fade out with the release time when you lift your finger from the surface.

Objects supporting ADSR envelopes (MultiBall and Pads for the time being) also have a hold
parameter. Its effect is similar to a sustain pedal, freezing the object’s state as long as its value is 1.
When set to 0, if has no effect. Interesting effects can be achieved when setting the hold parameter
to an expression depending on other objects’ state. We’ll cover such methods later on.

40

Hereis an example of brightness ADSR. Please note that the
Ephemeral mode has to be active for the envelope to work.
In Ephemeral mode the balls appear when you touch the
surface and they vanish when you lift your finger.

Sometimes you don’t want the full resolution of an Object
because the target parameter in your software is quantized
to only a few values. You can quantize the values sent via
OSC by using variables and expressions, but the steps
introduces by the quantization won’t be reflected in the
behavior of the Object.

Enter the Grid parameter. This parameter is available for
several objects, and “quantizes” the movement of your
Object into multiple steps. The number of steps can be
chosen in the adjacent fileds. Test it with the SoFunny
MultiBall object. Open its Properties and check the grid flag
after setting its x-value to 3 and the y-value to 5.

If you now have a look at the Object you see that the MultiBall area displays a grid and the Ball can
only move to distinct points on each axis.

The values produced by the SoFunny.x and SoFunny.y variables are of course also quantized to
produce only three steps on the x-axis (0.000, 0.5000, 1.000) and five steps on the y-axis (0, 0.25, 0.5,
0.75, 1).

6.9 Using Containers
The next thing we want to do is put some of the Objects into a Container to separate them visually
from our Faders. To do this, drag a square around the MultiBall and the Switch Object to select
them. Now right-click (ctrl-click on Mac) on the selection and choose Cut from the menu. The
Objects disappear. They are not gone, though, but just got copied into the clipboard of the Lemur
Editor.

41

Click the Create Object button and pick a Container from the displayed list, or drag and drop it
from the Palette. Name it and position the Container to the right of the Faders, then resize it to
encompass the complete right part of the Interface.

Right-click (Command-click for Macs) the Container and choose Paste from the menu. This puts
the two Objects we have cut out into the Container.

Now it’s time to have a look at how all this is mirrored in the Project panel. The Container can be
opened in the Project panel by clicking on the disclosure triangle in front of the Container. You
see that the two Objects in the Container are grouped on a lower level in the Project hierarchy.

42

Note that the use of Containers also has implications
for the Variable addresses of Objects living inside of
the Container. Indeed, within the Container, the local
names of both objects are still the same. From the
outside however, there are now known as
RatherInteresting.ILoveButtons and
RatherInteresting.SoFunny respectively. Do you feel a
little bit lost? Well, that’s normal at this point, but
don’t worry, we will come back to this later.

A Container Object can also be made tabbed and additional tabs inserted in the Object. To make
your Container tabbed, simply by ctrl-click (Mac)/ right-click (PC) onto the standard Container
object and choose the option Make tabbed.

43

Additional tabs can then be inserted with the option Add tab:

A small window then appears to name the new tab. Call it Sliders for instance :

44

Now select the remaining Objects outside the Container, cut them and paste them inside the new
tab:

In the Project panel, each tab is represented as a folder inside the Container Object. To switch from
one tab to the next in the Lemur Editor, click on the desired tab in the Project panel, or enter into
Run mode by holding the “e” key on your keyboard and clicking on the corresponding TabBar.

If needed, the tabs ’order can be modified by clicking within a Container and choosing the Bring
up or Bring down actions.

In large Projects the Project panel can quickly become crowded with Objects, leading to a lack of
overview. In that case you may want to use the Container Object’s Lock feature. Just try it with our
RatherInteresting Container. Check the Lock flag in the Properties and you will see the MultiBall and
Switch Objects vanish from the list.

45

A locked Container doesn’t show its contents in the Project panel. This of course also means you
can’t edit the Objects inside of it. Simply unlock it again, if you need access to the contents.

6.10 Import and Export of Modules
Now let’s suppose you would like to reuse later some portions of the interface in a different project.
For that purpose, the Lemur Editor’s Toolbar provides the handy Import Module and Export
Selection commands for the integration and creation of Modules. Any imported Module is
incorporated into the currently opened Interface and you can select any group of Objects for
export as a Module to the file system (the file extension for Modules is .jzlib).

Please note that you can also import and export elements via the contextual menu (right-
click/control-click on the Editing Area). Alternatively, you may drag your selection directly to the
Library panel while holding the alt key, provided you’ve defined a path for your Library files in the
Lemur Editor’s settings page.

Make sure that you do not destroy any dependencies in terms of Variables and expressions when
you export parts of your Project. It is good practice to encapsulate the exported Module in a
Container and have the variables and functions that are important for the Module’s functionality
created locally to that Container. If you define them globally, they will not get exported and the
functionality of the Module will be broken.

46

Chapter 7 - Mapping
7.1 Setting up MIDI messages
The simplest way to assign MIDI messages to your Objects’ Variables is to use the Mapping panel’s
MIDI tab and select a Variable / Target mapping.

The top of the MIDI panel features the Object Target menu, which lets you select a default MIDI
Target for all built-in or User defined Variables local to the Object. You can choose none, any of the
8 available MIDI Targets, or Parent, a Parent being a higher hierarchy level in the Project panel’s
tree. An Object’s Parent can be a Container or the Project itself. A Variable’s Parent can be an
Object, a Container or the Project itself…

If an Object Target has been set up at a higher hierarchy
level, this will be stated in the pull-down menu inside the
brackets next to Parent. Let’s check it out and set up a
Target at the Project level. To do that we select the Project
folder in the Project panel, and set its Object Target in the
Mapping panel to, say, Midi 0:

Now, for any object created prior to this, the Parent will appear in the Object’s Target menu. As for
any new Object, it will automatically be set to the Parent’s Target.

Below the Object Target’s menu, you find the Variable menu, for choosing a local Variable to pair
with a MIDI message, and the Variable’s Target menu, for selecting a Target, which may different
from the Object Target if needed. Note, it is this value that defines MIDI transmaission.

Clicking on the Quick Map button (the
tiny icon next to the Variable’s Target menu)
automatically sets the Variable’s Target and
MIDI message selection to those chosen in the
Lemur Editor settings window’s Lemur tab for
the Automap feature. This can be thought of
as a handy “semi-automatic” mapping
function.

47

The next element is the MIDI Message menu, whose purpose is, quite naturally, to let you select
the MIDI message you want to pair with your Variable. Messages range from Note messages over
Controllers to System Realtime messages, like Song Start/Stop or Active Sensing (the different
messages type are preceded by their MIDI status byte in hexadecimal form). In most cases though,
you will either choose a Control Change or a Note On MIDI message.

Depending on the chosen message type, the MIDI tab
displays different parameters to tweak, such as “pitch”
for Note On messages, or “controller” for Control
Change messages. Please refer to the MIDI Message
reference on Chapter 14 for details.

The Scale parameter, typically set from 0 to 127,
ensures that the 0-1 values generated by the Object’s
Variables are scaled to the MIDI values, which are
typically integers (whole numbers) between 0 and 127

It is important to understand that the communication
with MIDI Targets set up in the MIDI tab is
bidirectional. In other words, a Variable to which a
MIDI message has been assigned in the MIDI tab can
transmit this message but will also react to the same
incoming message. This explains why you also find
Variables in the Variables menu that do not output
values.

By the way you might already have noticed the different colours for the Variables in the menu:

• Red stands for the Object’s main parameters (x for a Fader; x, y, z for a MultiBall, etc.)

• Orange depicts a properties/behavior parameter (like friction, attraction, value, etc.)

• Green entries are Expressions created by the user.

• Blue entries are Functions created by the user.

The use of the Trigger Mode menu, common to three Mapping panel’s tabs, is detailed later on in
this chapter. It allows for choosing when and how often the messages are actually transmitted
(triggered).

48

7.2 Simple MIDI mapping examples
Let’s have a look at a simple example:

• Select a Fader in your project. To assign a MIDI message to this fader, click its MIDI tab
within the Mapping panel.

• Change the settings of the dialog to those shown above (Message is Control Change,
controller number is 7, and value is x). The Scale fields should be set from 0 to 127. Set the
MIDI channel according to the channel of the desired Target, which is chosen via the Target
Menu to the upper left. These settings configure the Fader to transmit MIDI controller 7
(volume) with the fader’s 0-1 floating-point values scaled to 0-127.

• If you wish to, you can click on the MIDI Map button located on the Lemur Editor’s Header
to verify the MIDI assignment:

The MIDI Mapping window then appears, displaying the assignment we just configured:

49

In the next example, we’ll use a MultiSlider object and automatically assign different control
change messages for each slider.

• Create a MultiSlider object. Using the Properties tab, set the number of sliders to 16.

• Now click on the MultiSlider’s MIDI panel

• Choose B0 Control Change and MIDI 0 as Target for the x Variable.

• Type controller number 10 into the first controller field. The second controller field is
automatically set to 25 to extrapolate for the 16 sliders. Indeed the Lemur Editor
automatically assigns each slider to successive MIDI controller values. The same thing
happens for other multi-value Lemur variables (such as MultiBall’s’ parameters).

The following example uses the same automatic mapping feature to create a chromatic one-octave
MIDI “pad” on Lemur that will send MIDI note messages.

50

• Create a Pads object. Give it 12 columns and one row.

• Select the Object and go to the Mapping panel’s MIDI tab. Choose the x Variable and Note
On as the MIDI message type.

• Set the first pitch field to 60 and the second will automatically be expanded to 71
(reflecting your 12 Pads). Your MIDI assignment should resemble the one shown below.

Click the MIDI Map icon to look at the MIDI Mapping window. You see the 12 Pads nicely
laid out working as a MIDI keyboard.

You can use more than 12 pads to create a bigger keyboard if you wish.

51

The Midi Mapping Window consists of seven columns:

• The Name column shows the name of the Variables used.

• The Msg (Message) column displays the numbers of the different MIDI messages used for
the individual mappings.

• In the Ch (Channel) column you find the associated MIDI channel for the individual
mappings.

• The Message Name column writes out the full name of the different MIDI messages.

• The two Parameter columns show the MIDI parameters associated with the chosen
message type, i.e. the CC number and the CC value for a MIDI controller message.

• The Target column shows which of the MIDI Targets that are defined on the Settings
window have been chosen for the respective mapping.

The Refresh button updates the list of MIDI mappings and you can close the window by hitting the
Close button or the escape key on your computer keyboard.

52

7.3 OSC
The Open Sound Control protocol specifies the transmission of messages between two devices.
Rather than attaching specific meanings to these messages - as it is done with MIDI - Open Sound
Control allows you to define your own system of messages. With Lemur, the names of objects you
create and their “path” in the project hierarchy constitute their default “address” for OSC messages.

As in the MIDI tab, the top of the OSC tab features the Object Target menu which lets you select a
default OSC Target (communication path to an application) for all built-in or User defined Variables
local to the Object.

On the next line, you see the Variable menu and to its right the Variable’s Target menu. Let’s say
we want to transmit the Fader’s x Variable via OSC. If you pull down the Variable menu, you see
that it lists all available Variables of the Fader: Choose the x. From the OSC Targets menu, choose
the Target that you have set up in the general OSC Settings.

If you now move your Fader it will send the value of x to the OSC address /Fader/x. Use whatever
OSC software you have to check it.

If you want to change the OSC address use the Custom Address flag and type in whatever address
you need. This may be useful in case of naming conflicts between Lemur Projects and projects
running on the Target side.

Default parameters of objects range between 0 and 1 (such as the x variable of a Fader). However,
you can choose to scale their OSC output to your own range. Enable the Scale checkbox and enter
other integer boundaries for the output.

The communication with OSC Targets is bidirectional. You define the pairing for both incoming
and outgoing OSC data with the various parameters of your Objects on the OSC tab. That’s why
you also find Variables on the menu that don't output values: they can be remote controlled from
the displayed OSC address.

53

Main object’s parameters react to incoming OSC according to their OSC range. Sending /Fader/x
1.0 to Lemur will bring the Fader’s cap to the top if the default range is used. If you’ve customized
the range to 0..2 as explained above, the Fader’s cap will instead go midway, since 1.0 is the centre
of the 0..2 range.

Note that OSC scaling is only enabled to object’s main parameters, and not to user-created
expressions, since those have undefined range by essence.

You might already have noticed the different colours for the Variables in the
menu. By the way, the above menu is from a MultiBall Object.

• Red stands for the Object’s built-in Variables (x for a Knob; x, y, z for a
MultiBall, etc.)

• Orange depicts a properties/behavior parameter (like friction, attraction,
value, etc.)

• Green entries represent User-defined Variables.

• Blue entries represent User-defined Functions.

The use of the Trigger Mode menu is detailed later on in this chapter. It allows for
choosing when and how often the messages are actually transmitted (triggered).

7.4 Trigger Modes
The purpose of the Trigger Mode menus is to define when a message should be transmitted with
respect to a change in a Variable’s state.

any: The message is sent whenever the parameter changes.

up: The message is sent each time the value rises from 0 into the positive value range.

down: The message is sent each time the value reaches 0 from the positive value
range.

up and down: The message is sent each time the parameter reaches 0 OR rises from 0.

+ : The message is sent each time the parameter increases above its previous value.

- : The message is sent each time the parameter decreases below its previous value.

For Custom MIDI Messages (see Chapter 10 for an explanation) there is an additional
item on the Trigger Mode Menu: None

Note: the first entry (“None”) means that a change in the attached value or expression
will not trigger a transmission of the MIDI message. It might, however still get triggered
by values or expressions associated with other parameters of the Custom MIDI message
that don’t have their Trigger Mode set to None.

54

Chapter 8 - Targets Setup

8.1 Lemur Daemon Targets
The Lemur Daemon handles the MIDI data flow between Lemur and the MIDI ports installed on the
computer.

The Lemur Daemon automatically scans all available MIDI ports on the computer, be they physical
or virtual, and make them available to Lemur(s) connected to the network. On Mac, the Lemur
Daemon also creates its own set of virtual ports, the Daemon inputs and outputs, which are
accessible in your applications’ MIDI settings. On PC, third party virtual ports such as those offered
by loopMIDI, loopbe or MIDI Yoke are needed in order to link to the Lemur Daemon and use MIDI
with Lemur.

It doesn’t end there. You can also have several computers on the same network all running Lemur
Daemons and all available MIDI ports of all computers will be accessible from Lemur MIDI Targets
setup. This means maximum flexibility in terms of MIDI topology. Regardless of the complexity of
your MIDI network, you can reach every single device via Lemur, as long as it is connected to a
computer on the same network as Lemur.

Lemur Daemon Targets can either be set up on Lemur itself or via the Lemur Daemon running on a
computer.

There are some thoughts to be invested about being able to make MIDI connections on Lemur and
making them from the Lemur Daemon itself. The two methods lead to different behavior when
starting Lemur or the Daemon, respectively:

• Connections created from Lemur are saved in its internal memory. Lemur will then
automatically attempt to reconnect to the Daemons at boot. If the connections can’t be re-
established (due to a missing Daemon on the computer), the entries on Lemur’s Lemur
Daemon Targets settings are greyed out. As soon as the awaited Daemon appears on the
network, Lemur makes the corresponding connection.

• Connections created from the Lemur Daemon itself are saved in its preferences file. They
will be automatically remade when the Lemur Daemon is launched. If the connections
can’t be re-established (because Lemur is connected), the entries on the Daemon’s settings
are greyed out. As soon as the awaited Lemur appears on the network, the Daemon makes
the corresponding connection. If you need to have several Lemur Daemon setups
depending on which computer Lemur is hooked to, it is recommended to create the
connections from the Lemur Daemons: this way, whenever you plug Lemur to any of those
computers, the relevant connections will be made.

55

On Lemur:

The Lemur Daemon Targets configuration screen on Lemur displays the currently defined MIDI
Targets. There can be up to eight of each kind. The MIDI communication is bi-directional, meaning
you can choose a MIDI input port (incoming to Lemur) and a MIDI output port (outgoing from
Lemur). Keyboard and Mouse communication is one-way only (outgoing from Lemur to a
computer). The ports available in the menu depend on the ports detected by the Lemur Daemons
currently running on the network.

By default only a single target is visible. Tap Add Target to view more. Whether visible or not,
Targets are always active.

Touch the Input or Output of a Target to be changed on the MIDI screen of Lemur. You get a list of
currently available Daemons on the network.

8.2 Lemur Daemon Targets Setup Example
Let’s go through the steps to get a MIDI connection up and running:

• On PC, start the Lemur Daemon by going to the Start menu folder and clicking on the
Lemur Daemon icon. On Mac, click on the Lemur Daemon icon in your Applications folder.

• Push the Settings button on Lemur (top right button).

56

• Now touch the Outputs button for the Lemur Daemon Target 0 and see the list of
Daemons detected by Lemur.

• Choose one of the MIDI ports (see below for details) and touch the Connect button. You
should now see the selected port appearing in the Targets list.

• You should now see the selected port appearing in the Targets list.

• Now let’s see how the Lemur Daemon register these connections. Click on the Lemur
Daemon’s icon on your computer and choose Setup Lemur Daemon.

• A window appears, listing the ports connections we’ve just configured.

57

• You can now check if the MIDI connection works. Connect an application to the virtual
MIDI port. Create a Fader and send some controller data to Target 0 or take a Pad Object
and send some Note On messages.

• Turn Lemur off.

• Turn it back on and have a look at the Lemur Daemon Targets configuration page on
Lemur and at the Settings of the Daemon. Everything is still there and works as before.

Connections to MIDI ports can also be configured from the Lemur Daemon:

• Click the Add button in the Lemur Daemon window. You are now presented with all the
MIDI ports and the Mouse and Keyboard port of the machine. You can choose any In or Out
port to connect to a Lemur. (Note that Mac Users will see there the Daemon Input and
Daemon Output virtual ports that are automatically created by the Lemur Daemon at
launch). Any port in the Daemon In section can be connected to the output of a Lemur. Any
port in the Daemon Out section can be connected to the input of a Lemur.

• Double click on the local port you want to connect. Here, we want to receive all MIDI data
coming from Lemur’s Target 1 on our virtual port named Daemon Output 1. You can now
browse the network and look for a Lemur to connect to. Choose Lemur Out 1 as a source,
and double click the item, or hit the Connect button.

58

• Congratulations, you have successfully created a connection from the Lemur Daemon!
Now if you quit and re-launch the Daemon, or reboot your computer, it will automatically
redo the connection from IAC 1 to Lemur Out 0. Use this technique if you often swap
computers connected to Lemur, and need a unique configuration for each of those.

8.3 OSC Targets
OSC Targets can be software applications on your local computer, somewhere on the network, or
OSC-enabled hardware connected to the network. They are called Targets because they are what
Lemur targets its messages at. Always remember that OSC is bi-directional and that OSC Targets
can also control Lemur’s Objects. Lemur is hard-coded to listen on Port 8000.

OSC Targets can be configured from Lemur’s OSC Targets configuration screen, which is the
second part of Lemur’s Settings window. OSC Targets are also mirrored in the Lemur Editor ‘s
settings window if a Lemur is connected. You can use both screens to set up your OSC Targets.

On Lemur, simply fill in the IP Address and Port number pad for each Target you want to
communicate with.

59

The OSC settings are automatically saved into Lemur’s memory. Whether you set up your OSC
targets from the Lemur Editor or from Lemur, they will always be saved to memory and available at
each reboot. The Done button closes the Settings window and returns you to your project.

If you’re configuring your OSC Targets from the Lemur Editor’s settings window, and if your Target
is a piece of software running on the same computer as the Lemur Editor, click on the My IP button
to automatically fill in the IP of your computer.

The OSC Targets’ Port setting is dependent on the corresponding setting in the targeted
application. Ports are something like channel selectors that allow multiple applications to share the
same IP address without conflicts. The port number configuration is determined by the software
you are using:

• Port 8001 and 8002 should not be used, because the Lemur Editor and Lemur Daemon
use those ports to establish connections with Lemur. If you try to use another application
while the Lemur Editor is open, the application will not be able to access ports 8001-8002.
Similarly, if you launch the Lemur Editor while another application is using ports 8001-
8002, it will be unable to connect to Lemur. Lemur is hard-coded to listen on Port 8000.

• For Cycling 74’s Max/MSP, the port number can be anything. 8000 is the typical value
used.

• For Native Instruments’ Reaktor, the default port number is 10000.

• For other OSC-compatible software or hardware, consult its documentation for details on
port settings.

• Lemur is hard-coded to listen on Port 8000.

Once you have loaded a Project from the Lemur Editor onto Lemur (which is done automatically on
Connect), or opened a Project from Lemur’s internal memory, the OSC messages are handled by
Lemur. This means you can close the Lemur Editor and let Lemur communicate with OSC Targets.

60

Chapter 9 - Going further with the Lemur Editor
9.1 Control your Objects with your Objects
One of the many exciting features of Lemur is the ability to control the behavior of your Objects via
other Objects in the Interface. Let’s go through a basic example: create a Multiball and a Fader, and
name the Fader Friction. Check the Fader’s Label flag in its Properties tab to make things clearer.

Now switch to the Behavior tab of the MultiBall Object
and change the Physics parameter to Mass-Spring.
Now type in Friction.x (the Fader’s x Variable) as the
value for friction:

Now you control the MultiBall’s friction parameter via
the Fader, it’s as simple as that. Use any value of any of
the Objects dwelling in Lemur Interface to control any
of the parameters. This can lead to very complex and
interactive Interfaces …

If you have sub-objects you can address their behavior properties individually by using a vector or
array instead of a singleton. If you have five balls in a MultiBall Object and use a vector with 5
components to denote, say, speed, each ball will at its own speed value. Of course this also works
with attraction, friction or any other parameter of Objects with multiple sub-objects.

You could have the Fader display the chosen friction value simply by checking its value flag. But
sometimes you want to have the value displayed at a different place on your interface. You can
even display values on top of Objects if you wish, and that’s what we’re going to do now. Create a
Monitor Object and position it right in the middle of the MultiBall area.

61

Name the Object Grip, check the Label, Transparent and value flags. Fill in Friction.x for value
because we want to display the friction parameter set via our Fader.

Now set the Font size of the Monitor to 13pt and choose a nice, contrasting colour. You should get
something like this:

If you move the Friction Fader, its value is displayed via the Grip Monitor. You can still use the
MultiBall Object, as if the Monitor wouldn’t exist, because the Monitor is transparent to touch.
Don’t mix this feature up with the Transparent flag of the Monitor which is only making the
background of the Monitor invisible. You can always “reach through” a Monitor Object, even if its
Transparent flag is unchecked. This can come handy if you want to hide Objects in your Interface
but still use them with your fingers.

62

9.2 Making your own Object Variables
Object variable are declared by clicking on the Create Expression button below the Project panel,
or by pressing Command/Control(Mac/PC) + Shift + E keyboard shortcut. They may be declared at
different levels in the project by selection within the Project hierarchy. Object variables declared
this way persist over time, unlike variable defined within scripts.

Now, let’s say you have that special Reaktor patch with a custom parameter having an extra wide
range. You want fine-grained control with a Fader in the lower range but you also need the
possibility to control it over the complete range. How would you do that?

By creating two Fader Objects, and use second as a multiplier for the Value of the first one through
a User-defined Variable that gets transmitted via OSC and MIDI.

So let’s create two Faders, and select the first one in the Project panel:

Now click on the Create Expression button below the Project panel.

Type in the name MFader into the dialog and
click OK. You should see the Variable named
Mfader in the tree, local to the Fader, and color-
coded with a Green dot.

We want to scale the output of the first Fader
with the value of the second. Do this by clicking on the fresh Variable in the Project panel. Type
x*(Fader2.x*100) into the Script field of the Variable. Make sure that the checkbox in front of the
local Variable is checked. This ensures that the Variable is actually transmitted via OSC and MIDI. It
should look like this:

You might wonder why we addressed the Fader’s value with x directly and not via Fader.x. This is
possible because the Variable we defined is local to the Fader so that it “knows” the address of its
Parent. If we had created the User-defined Variable at the project level, the full address (Fader.x)
would be required.

63

Of course you want to see the output of the Variable. Open
the Properties tab of the first Fader and check the value flag.
Type MFader into the value field. As we don’t care about
decimal places this time, set the Precision to 0.

For the second Fader also check the value checkbox and type
x*100 into the value field. Precision can also be set to 0.

If you now move the Faders you will see the relevant values
displayed above. Move the second Fader and the value of the
Variable will change, because it gets multiplied by a factor
between 0 and 100 depending on the value of the second
Fader (Fader2.x*100).

Please note that the displayed values are not those actually
produced by the Faders. They both still produce values between 0
and 1. Those values are combined in the calculation of the local
Variable MFader that is displayed above the first Fader. The factor
that’s used for multiplication is displayed above Fader 2.

Now, what if you want to multiply with multiples of 10, only? The
Fader has grid parameter for quantization of the output.

We want to transmit the local Variable MFader via MIDI. This is easily done via the MIDI panel of the
first Fader. The Variables menu contains the Variable MFader and we can choose it to be
transmitted to MIDI Target 0 (or any other Target we want).

Choose Control Change as Message and Controller 10
as controller. Make sure that you uncheck the Scale
checkbox, as we want the values to be transmitted as they
are and not extrapolated to values between 0 and 127.
Now Lemur will output values between 0 and 100 to MIDI
Target 0 depending on the state of the two Faders.

64

9.3 Using Vector Variables
Vector variables are also declared by clicking on the Create Expression button below the Project
panel, or by pressing Command/Control(Mac/PC) + Shift + E keyboard shortcut.

Lemur doesn’t only know data structures containing single values. There are also vector/list
variables that consist of more than one value. See chapter 13.1 for further information

Vector Variables are used by the Breakpoint, Leds, MultiSlider, MultiBall, Pads, and Switches
Objects.

This can be convenient when you need controls for ADSR envelopes or other tightly interrelated
groups of parameters. Let’s use a MultiSlider to produce values for an envelope working
somewhere in a Synthesizer and triggered with a Pads Object:

• Create a Pads Object and name it Trig, then create a MultiSlider and name it Env.

• Click the MultiSlider’s Properties tab, and set the number of sliders to 4. Move and resize
the MultiSlider so you can control each slider easily. Maybe something like this or a little
bigger?

We’re going to use the first slider for Attack, the second for Decay, the third for Sustain, and the
fourth for Release. As with the x variables of all Lemur objects, the MultiSlider x variable ranges
between 0 and 1. This is not really enough of a range for the time values of our envelope, so we
need to scale these values. We’ll also need to create three Expressions, one for each of the
envelope’s time values.

• Click on the Trig Object (Pads) in the Project panel so that its name is selected.

• Click the Create Expression button to create a new User-defined Variable.

• Name the expression Atk and press return

• In the corresponding script field enter the Expression shown below:

This means that the Atk Variable will use the value of the first slider (with the index of 0) of the
MultiSlider we just created.

65

Create similar Expressions for Dec (decay), which will use Env.x[1] * 5.0, Sus (sustain), which will
use Env.x[2], and Rel (release), which will use Env.x[3] * 5.0. Note that we do not scale the value
for Sustain, since this is just a value between 0 and 1.

When you’re done, your Project panel should look like this:

The final step is to enter these Variable names in the Behavior Properties of the Trig Object. Enter
Atk for Attack, Dec for Decay, Sus for Sustain, and Rel for Release as shown below. As the Variables
are local to the Trig Object, you don’t have to write out the complete addresses (which would be
Trig.Atk, Trig.Dec, etc.).

Now you can test your envelope by hitting the Pads Object. You don’t even need an attached
Synthesizer to see what’s going on. Dial in the envelope values via the MultiSlider and you will see
how the changes of the sliders affect the brightness envelope of the pad.

66

9.4 Using Custom MIDI Messages
Cutom MIDI Messages are created by clicking the Create Custom MIDI icon below the Project
panel, or by pressing Command/Control + Shift + M keyboard shortcut.

An extended Mapping panel with additional triggering modes and options is used to construct
your Custom MIDI messages. Unlike simple MIDI messages set in the standard Mapping panel
Custom MIDI messages are not bi-directional.

Custom MIDI messages provide the means to generate very complex MIDI data by entering
Expressions for all the parameters of the chosen MIDI message. When using the standard Mapping
panel’s MIDI tab, you can only assign the selected Variable to one parameter of the message. With
Custom MIDI messages you gain complete freedom to assign any value or expression to any one of
the different parameters of the message. And remember that expressions can use all values of all
Objects in your Project allowing the construction of very complex messages.

For a Note On message the parameters would be:

• Pitch

• Velocity

• MIDI Channel

You can even use an additional expression to control the triggering of the MIDI message. A Trigger
Mode menu is also available for each of the Custom MIDI’s parameters. Please read Chapter 7.3 for
details on Trigger modes.

As a small example, let’s create a Pads Object and two Faders, then select the Pads Object in the
Project panel.

Next, click on the Create Custom MIDI icon below the Project panel to create a customized
MIDI message local to the Pads Object. and call it MyMIDI.

67

The Custom MIDI object will appear in the PROJECT panel

In the MAPPING panel for the Custom Midi message
select an appropriate Target MIDI port.

For Message type we choose Note On from the
Message menu.

We want a fixed pitch for the generated note
messages and set the pitch field to 65.

For velocity we use the value of the first Fader
(Fader.x), scaled to the MIDI range of 0 to 127 via
the Scale fields. Note that we’ve set the
corresponding Trigger modes to “none” (change of
value of the Fader doesn’t trigger message
sending).

The Trigger field is set to x, which is the state of the Pad. By setting the corresponding Trigger
mode field to “up”, the MIDI message is sent when x leaves 0, i.e when the Pad is pressed.

Now we can trigger notes with the Pad and control the velocity with the first Fader. As a playful
addition we assign the other Fader’s value to the MIDI channel. Here we use range function to get
values between 1 and 16.

Now you can choose the MIDI Channel for the outgoing note messages. This might be an exotic
application but it’s fun – stack up a pile of sounds in multimode in your favourite synth and trigger
different sounds by moving the channel fader on Lemur. Pay attention to the different Trigger
Modes we use. Pitch, Velocity and Channel are set to None. Only a change in the Pads.x value
triggers transmission of the MIDI message.

It’s important to note that a Variable assigned to a Custom MIDI can output data but will not react
to the corresponding incoming message. Custom MIDI messages are not bidirectional.

68

9.5 Bidirectional Control
Not only can the Variables of a Lemur Project output data, but they can also be controlled by
external software or hardware via MIDI or OSC. This is what we refer to as bidirectional control.

If you want to control a Variable via MIDI, just set up the correct MIDI port for a Target in the Lemur
Daemon Target settings. Then choose that MIDI Target for the Variable on the MIDI panel.

If you have, for example, a Fader’s x value set
up for transmission of MIDI controller 1 on MIDI
Target 0, it will also be controllable via
incoming controller 1 data on the input port
chosen for that MIDI Target.

Similarly, you can control all values via OSC. The
different values are controlled via their OSC
addresses you already know.

For controlling a Fader via OSC, just set
up the OSC Target for the x value on the
OSC panel and produce the OSC
messages on the Target side.

In the Fader’s case you would send
values between 0 and 1 to the OSC
address /Fader/x to the current IP and
port 8000 of Lemur. If you’ve set up a
custom OSC range for Fader.x, it will
respond to values inside that range.

Please make sure that you think about the hierarchy of Objects on Lemur. If the Fader is inside of a
Container the address would be /Container/Fader/x.

Note that it’s also possible to switch Interfaces via OSC. Just send an OSC message in the format
“/interface InterfaceName” to Lemur’s IP (port 8000). In our case this would look like “/interface 1
Demo” for switching to the first one. For names that include spaces there is an additional
consideration to be made. The OSC software has to send the name as a single string. This might
involve putting it in quotes in the software. This is the case for Max/MSP.

Control of Lemur Objects can also be achieved by using multi-line scripts set up to execute on
either ‘On MIDI’ or ‘On OSC’. The relevant OSC or MIDI data is then available as a Vector called
either OSC_ARGS or MIDI_ARGS for use within Lemur. Individual bytes of this data are obtained via
array notation ie. OSC_ARGS[0], OSC_ARGS[1] etc

For more about working with OSC, MIDI and bi-directional control please have a look at the
extensive workshop chapters we offer on our website. There you’ll learn everything about how
Lemur loves Max/MSP, Reaktor and other OSC enabled applications.

69

9.6 Defining and Using Functions
In addition to built-in functions and operators, you may define your own mathematical functions
to use in User-defined Variables and expressions. Here’s how to do it:

Select your projects folder in the Project panel, and click the Create Expression button to create a
new Expression.

The Expression is created at the level of the hierarchy you have currently selected. If you have an
Object selected it will be an Expression local to that Object. If you have the Pojects folder selected
the Expression will go there and be available for use anywhere in the Project.

• Type the name of the function and its arguments in parentheses. For example, to define a
function named cubed that takes one argument, you would type:

• Click OK and go to the Script panel to type in the definition of your function as an
expression. You can reference other variables if needed. The example below just multiplies
the function argument a by itself twice to raise the input to the third power.

The newly declared function appears in the Project panel with a Blue dot to indicate it is a function.

How to use the new function? Let’s try it out on a simple Fader: create a Fader Object, make it
horizontal for a change (by stretching it horizontally) name it Cubic and check both its label and
value checkboxes in its properties tab.

70

Set the value field to cubed(x*10). You are now using the Function we just created to raise the x
value (which is multiplied by 10 beforehand) to the power of three. The variable argument of the
Function is replaced by the Expression x*10.

Move the Fader and you will see that it displays an exponential range from 0 to 1000.

71

Chapter 10 - Introducing Multi-line Scripts
Multi-line scripting is one of the most powerful features of the Lemur Editor. It can be used, in
conjunction with a set of powerful built-in functions and operators, to instruct Lemur to perform
specific tasks at specific times. From simple actions such as changing a MultiSlider color when a
switch is pressed, to complex actions such as commanding a Multiball's balls to follow set
trajectories... possibilities are truly endless.

Scripting can be quite easy, but it can also be developed into very complex systems. This section is
not designed to teach you everything you need to know. It is recommended that you should learn
some fundamental programming principles to fully utilise Lemur’s scripting possibilities.

10.1 Creating a Script
Multi-line Scripts are created by clicking the Create Script icon below the Project panel, or by
pressing Command/Control + Shift + S keyboard shortcut.

To create a new script, the first step is to select the element you want to associate the script with in
the Project panel. Scripts may be be associated globally across the entire project, or a specific
interface, or locally to a particular container or object,

Select the required element in the Project panel and click on the Create Script icon.

A dialog window will appear, asking you to name the script appropriately. Avoid names taken by
internal functions, such as set, firstof, replace and so on, as your script would then temporarily
become a substitute for that particular function. You can refer to the Internal folder in the Project
panel for a quick look at the built-in functions list.

When created, your script will appear in the Project panel, preceded by an orange dot, and
followed by brackets containing the script's arguments, if any, representing the values passed to
the script at the time of call.

72

10.2 Script Execution
All Lemur scripts are executed for every frame displayed, 60 times a second, roughly every 16msec.

Script Execution occurs according to selections set in the Execution toolbar of the Script panel.
Before beginning to encode a multi-line script, it is essential to define precisely when Lemur should
perform the desired task and set the script's execution mode accordingly.

To this end, a choice of 6 different Execution modes is available to cover the range of possible
situations:

• On Expression: the script's execution is triggered when the value of the variable or
expression entered in the adjacent field changes in the manner specified by the Trigger
menu. A valid value must be entered here in order for the script to execute.

• The Trigger menu offers several options: the script can be triggered whenever the variable
or expression changes, when it rises from 0, when it reaches 0, when it reaches or rises from
0, each time it increases above its previous value, or each time it decreases below its
previous value. This is the same Trigger menu that we find in the MIDI or OSC tabs when
we assign OSC or MIDI messages commands to objects.

• On Frame: the script's execution is triggered each Lemur frame, that is, each time Lemur
scans an interface to recalculate the states of the objects on display. The rate at which
Lemur scans an interface is inversely proportional to the amount of elements to be
calculated. With a maximum rate of 60 frames per second for a blank interface, this rate
slows down with increasingly complex Interfaces.

• On OSC: the script's execution is triggered upon reception of the OSC message displayed
in the adjacent field, the script's arguments (OSC_ARGS).

• By default, this address is set to the script's name (Container/Fader/Scriptname), but can be
customized by ticking the Custom Address checkbox.

• The OSC message’s arguments are then available inside the script with the OSC_ARGS
array. Individual values are accessed OSC_ARGS[0], OSC_ARGS[1] etc, Please consult your
device or application documentation for specific details on argument format

73

• On MIDI: the script's execution is triggered upon reception of the MIDI message
(MIDI_ARGS) defined in the adjacent fields: MIDI Message type, MIDI Target, MIDI channel.

• The MIDI Message selection defines what is received and the particular arguments of the
selected MIDI message are then available inside the script with the MIDI_ARGS array. See
Chapter 14 MIDI Mapping Reference for further details of individual messages.

• In the case of a SYSEX message, this array can be of varying length, to a maximum of 256
bytes, and is typically terminated by the F7 character. You may also use sizeof() to check
the length of known messages., and subarray() to access subsets within it.

• The first SYSEX byte is MIDI_ARGS[0], the second is MIDI_ARGS[1], etc. A typical System
Exclusive message will consist of Manufacturer, Device and Command numbers that are
specific to each device, followed by data specially formatted for that particular device.
Please consult your devices documentation for further details.

• On Load: the script's execution is triggered when the project is loaded on Lemur.

• Note: On Load scripts relying on external numerical constants or arrays of constant
numerical data should operate correctly, however there can be issues when depending on
more complex variables, or calling other scripts, due to variable evaluation order.

• Manual: the script's execution is triggered when called up in another script or expression.

• Arguments may be declared in the script's name and will be available within the script .

Remember, it is essential to define when Lemur should perform the desired task and set the
script's execution mode or else it may not execute the way you intend or at all.

74

10.3 Script Variables
The Multi-line Script panel allows you to declare (create) variables specific to your Script, allowing
you to store local values while the script is in use. These “declared” Variables are only visible inside
the Script panel (they do not appear in the Project panel), and expire when the script is not in use.

 In addition to these Script Variables, all the built-in or User-defined Object Variables alike can be
recalled in your code and combined with functions and operators to create your script.

To declare a script Variable, use the statement decl :

decl will appear in orange once the line is correctly completed with a semi-colon;

A script Variable can be declared and equated to an expression in a single line too:

Note that the Multi-line Script syntax requires that each line of code ends with a semicolon
(;). If any error, such as forgetting a semicolon, is present in the script, the lines of code will become
red, and a “caution” triangle appears in the Project panel next to the script.

75

10.4 Attributes
The Objects' Attributes include all those Object parameters which are editable in real-time, either
through instructions in a script with the function setattribute(object,'name', value), or directly
through an OSC command in the form /Container/Fader @grid 1 (activate the Fader's Grid
parameter), /Container/Fader @rect 300 100 60 200 (change the object's position to X=300 and
Y=100, and the object's dimension to W=60 and H=200), or /Container/Text @content "Hello !!!"
(change the displayed text). The Lemurs iPad OSC listening port is 8000.

Let’s look at the Fader’s attributes for instance. The table below presents a list of all its attributes,
giving the possible values these attributes can take, together with a brief description. A list of all
the attributes for each Object can be found in the Object Reference Chapter (Chapter 12).

The Fader Object’s attributes

Attribute Value Parameter

capture 0 or 1 capture off/on

color integer* color of the object

cursor 0 to 3 cursor mode

grid 0 or 1 grid off/on

grid_steps 1 to 33 number of grid steps

label 0 or 1 label off/on

physic 0 to 2 physics mode

precision 0 to 6 decimal places of displayed value

rect {X,Y,W,H} object’s position and dimensions

unit text unit of displayed value

value 0 or 1 value off/on

zoom 1 to 50 zoom in object

Imagine, for instance, that you would like to change your Fader's physic mode from Interpolate to
Mass-Spring while you’re playing, by pressing a Switch on your interface. Your script, created
locally to your Switch object would consist of the following line:

With this line, we instruct Lemur to set the ‘physic’ attribute of Fader Object to the value x+1, x
being the x Variable of the switch since the Script was created local to the Switches Object. This
means that the value of the ‘physic’ attribute will be equal to 1 when the Switch is off (x=0), and to
2 when the switch is on (x=1). Note that the Execution mode is set to “On expression x”, with
Trigger mode “any”, so that the script is executed each time the switch is pressed on or off.

By the way, it is useful to know that when you are working in the Lemur Editor, the function
getattributelist(object) can be used to return a list of attributes for the chosen object in a Monitor
object on Lemur

76

10.5 Built-in Functions and Operators
The Lemur Editor features a wide range of handy built-in functions, all listed in the Project panel’s
Internal folder, whose purposes are to make your life easier when defining a single-line expression
for a User-defined Variable or when encoding a multi-line script. Some of these functions, such as
the firstof(x) function (returns the position of the first non-null item in a vector) can be used in
both single-line expressions and multi-line scripts, while others, like the
setattribute(object,'name', value) mentioned previously, are specific to multi-line scripting.

In addition, the multi-line Script panel also understands a wide range of operators such as the
arithmetic, comparison and logic operators, but also operators denoting assignment or bitwise
operations. Basically assignment operators allow the same variable name to contain different
values at different times during the script execution, while bitwise operators allow operations on
array patterns at the level of their individual elements.

Please refer to the Parser Reference on Chapter 13 for descriptions of all built-in functions and
operators.

10.6 Examples
We have a Multiball, together with a CustomButton and a Fader. We'd like to be able to switch the
Multiball's grid on or off with the CustomButton, and set the Multiball's number of balls with the
Fader.

Let's take care of the Multiball's grid first. In parser terms, switching a Multiball's grid on or off
means setting its 'grid' attribute to 0 (off) or 1 (on). For the script to be executed when the
CustomButton is pressed, we need to associate the Script with the CustomButton's x variable. To
do this, we'll first select the CustomButton in the Project Browser and click on the Script icon. We'll
name this script gridon and set its execution mode to On Expression. We then fill the field adjacent
to On Expression with x, and keep the trigger menu to any: the script will be executed whenever
the CustomButton's x variable (its on or off state) changes. As far as the code is concerned, we'll use
the setattribute(object,name,value) function, where object will be Multiball, name the attribute's
name 'grid' and value will be x, the CustomButton's state:

77

 Let's take care of the Fader next. Again we'll use the
setattribute(object,name,value) function, but this time the attribute's name will be 'nbr': the
number of balls.

To make this practical, we'll use a 10 steps grid for the Fader, so that each step upward adds a ball,
and each step downward takes one off. We can translate this into a number with an expression
local to the Fader: select the Fader in the Project Browser, click on the Create expression icon, name
it num for instance and equate it to the expression round(x*9)+1. That way num will take integer
values between 1 and 10, values that we'll use in our script with the
setattribute(object,name,value) function to set the number of balls. We'll associate the script
with the Fader object, to be executed On Expression num (each time the Fader modifies the
number of balls) as follows:

An alternative would be to replace the Fader object with two pads: one for incrementing the
number of balls, the other for decrementing. To make it more interesting, we can also add a
MultiSlider for setting the Multiball's color, and a Fader to zoom in the Multiball for increased
precision.

78

We'll begin with the + Pad together with a script we'll call increment. Again the execution mode will
be On Expression x, but this time we'll set the corresponding trigger menu so that the script gets
executed only when x goes from 0 to positive (we only want the script to be triggered when the
pad is pressed, not when it's released).

Our script begins by declaring a new local variable b, which will correspond to the current number
of balls, i.e, the value that we'll increment. We can use the function getattribute(object,name) to
get this info. We'll then use the arithmetic operator ++ (which simply means "increment") to
increment our b variable before using it with the setattribute(Multiball,'nbr',b) function.

Similarly, we'll create a second pad together with a script called decrement. The difference here will
be the use of the arithmetic operator -- (which means "decrement").

The MultiSlider object will be used to set the Multiball's color, with three sliders for mixing the
primary colors (Red, Green and Blue) according to the RGB additive color model. In the script, we'll
use the setattribute(object,name,value) function to set the Multiball's 'color' attribute with a
value computed by the RGB(r,g,b) function, which will convert the 3 sliders (each between 0 and
1) into a single color value that the parser understands. Note that the value of the color attribute
can range from 0 to 8355711: ((R*127 x 2^16) + (G*127 x 2^8) + B*127), where R, G and B are values
between 0.00 and 1.00.

Finally we'll create a script for the Fader object in order to control the Multiball's 'zoom' attribute.
Since the 'zoom' attribute takes values between 1 and 50, we'll need to scale the Fader's x variable
by multiplying it by 50 and adding 1:

79

The setattribute(object,name,value) can also be used to change the dimensions of an object
and/or move it around by changing its 'rect' attribute. The'rect' attribute takes values in the form
{X,Y,W,H}, where, as in the Lemur Editor's Properties tab, X is the horizontal position of the object, Y
the vertical position, W the width of the object and H the height.

In this last example, we've got large Container called Containerbig filled with Multiball objects, and
in order to gain space, we've enclosed it within a smaller Container called Containersmall and add a
Fader to scroll up and down the Multiballs.

The script, local to the Fader object, and whose execution is initiated by any change in its x variable
(each time the Fader moves up or down), uses the value of x to multiply the Y element of
Containerbig's rect attribute, thereby changing its vertical position within the smaller container:

Lastly, we can add an horizontal Fader object called Fader2 whose width is recalculated as the
Fader is displaced. Maybe not the kind of Fader you'd like to use for controlling your master
volume in a Live situation, but interesting nonetheless. Try changing the Fader's Physics to Mass-
Spring to make it more fun.

80

Here we begin the script by declaring a new script Variable temp, then use the function
getobjectrect(object) to obtain the existing value of the rect attribute in the form {X,Y,W,H}. In the
third line of code, the Fader's new position modifies the third element of the vector tmp (tmp[2]),
which corresponds to the width of the object. Finally the freshly calculated variable tmp is injected
in the setobjectrect(object,rect[]) to modify the width of the object.

10.7 Color Coding in Scripts
The Lemur Editor performs syntax coloring checks of your scripts and expression.
The color of the coding will show if there is a syntax error or not. If there is no
syntax error, different colors are assigned to different programming objects.

Scripts

Red – Error: The script contains syntax errors and will not compile

Orange – Commands; decl statement in declaration of variables in scripts.

If/then/else and do/while etc commands,

Green – Comments: Starting with ‘//’ and ending with a line feed/carriage

return, multine-line coments starting with /* and ending with */

Blue – Literals and Strings, recognized as constants at compile-time and

therefore will not be reevaluated

Purple – Character strings for attribute names

Grey – Commands, Call of Scripts, Variables

Expressions

Red – The expression contains syntax errors

Black - The expression is Ok

Blue – Literals and Strings, recognized as constants at compile-time and

therefore will not be reevaluated

81

Chapter 11 - Advanced Scripting

11.1 Conditional statements
• if

When the parser finds an if in the Script panel, it expects a boolean condition, that is, a logical
proposition having one of two values: true (non-zero) or false (zero). If the condition is true, the
parser executes the single line or block of code immediately after the condition, which, in the case
of a block of code, will be enclosed within braces {}. If the condition is false, the statement in the
single line or block of code is ignored.

The if structure in its simplest form:

(if firstof(x) is smaller or equal to 3, Lemur sends a Control Change MIDI message on Target 0 for
controller 20, with a value of 127, on MIDI channel 1.)

Several instructions can follow the boolean condition provided the block of code is enclosed
within braces:

(if firstof(x) is smaller or equal to 3, Lemur sends two Control Change MIDI messages: one for
controller 20, one for controller 21.)

• else

It's also possible to make use of the else statement. If the condition is false, the execution jumps to
the instruction immediately after else :

(if firstof(x) is smaller or equal to 3, Lemur sends a Control Change MIDI message for controller 20.
If firstof(x) is greater than 3, it sends a CC for controller 23.)

82

The else statement can also be a block of code contained within braces:

(if firstof(x) is smaller or equal to 3, Lemur sends two CC MIDI messages for controller 20 and 21.
Else if it's greater than 3, Lemur sends two CC MIDI messages for controller 22 and 23.)

• else if

By using else if, it is possible to combine several conditions. Only the statement(s) following the
first condition that is found to be true will be executed, and all other statement(s) will be skipped.

Let’s go through an example. We're using a row of pads as a rudimentary keyboard, and we'd like a
Text object to display the notes' names as we're playing: A,B,C... For this we'll use a script local to
the Pads object, to be executed "on x" (each time a pad is pressed), and consisting of several else if
statements. The firstof(x) function is used to return a value corresponding to the position of the
pad being pressed, and the setattribute() function sets the Text Object's ‘content’ attribute
according to the value of the firstof(x) function.

83

11.2 Loops
Note: The time variable is evaluated at each frame, which typically happens 60 times per second,
and less with very heavy templates or lots of scripts. So a loop in a script that waits for time to cross
a certain mark will never exit, since time is "frozen" in a way. Actually there's a watchdog that
makes sure script eventually exit and the app is not stuck indefinitely)

• for

The for loop is an iteration statement which allows code to be repeatedly executed a specified
number of times. The type of for loop used in the Script panel is characterized by three control
expressions separated by semicolons: the initializer expression, the loop test expression and the
counting expression. The initializer sets up the initial value of the variable within the looped block
of code. The loop test expression is evaluated at the beginning of each iteration through the loop,
and determines when the loop should exit. Finally, the counting expression is responsible for
altering the loop variable.

Let’s go through an example. In the script below, a for loop is used to set up the value of a
MultiSlider's individual sliders on the basis of a cosine function. The initializer i=0 sets up the the
initial value of the variable i to 0, which means that the first time, the loop block is executed for
MultiSlider.x[0], setting up the value of the first slider. The variable i is then incremented by the
counting expression ++ to i=1, and the code within braces repeated for MultiSlider.x[1] . The
variable will be incremented and the code repeated as long as i< sizeof(MultiSlider.x), which
means for each slider up to MultiSlider.x[31].

• break

A break statement interrupts the execution of the current for/ while loop and jumps to the next
statement.

84

• continue

The continue statement is used to skip the remainder of the loop body and continue with the next
iteration of the loop. The effect is to prematurely terminate the innermost loop body and then
resume as normal with the next iteration. If the iteration is the last one in the loop, the effect is to
terminate the entire loop early.

• while

A while loop allows code to be executed repeatedly based on a given boolean condition. The
while structure consists of a condition and a block of code. The condition is first evaluated, and if
the condition is true, the block of code within braces is then executed. This repeats until the
condition becomes false.

Let’s go through another example. In the script below, the getfirst(Container) function is used to
select the first object within the Container object's hierarchy. Since there're several objects in the
Container, the boolean condition (obj) will necessarily be true, and therefore the statements within
braces executed a first time. The getobjectrect(obj) function will extract the position and
dimensions of the Container's first object, and its vertical position (tmp[1]) recalculated on the
basis of the Fader's position, and object's offset (the offset variable defines the vertical position
within the Container, and is manually entered for each object).

Once the setattribute(obj,'rect',tmp) function has changed the object's vertical position, the obj
variable is replaced with the next object down the Container's hierarchy (this is done with the
getnext(obj) function), and the statements within braces repeated. Those statements will be
repeated for each object within the Container, that is, as long as the getnext(obj) returns a non-
zero value and keep the boolean condition (obj) true.

85

• do while

The do while structure also consists of a condition and a block of code, but the difference here is
that the block of code within braces is executed first, and then the condition evaluated. If the
condition is true, the block of code within braces is executed again. This repeats until the condition
becomes false. The do while loop can be referred to as a post-test loop, and the while loop as a pre-
test loop.

11.3 Return
The return statement isn't specific to conditional or loop structures, but can be used anywhere to
instruct the execution to leave the current script. For instance, it can be used to optimize a script's
efficiency by preventing the execution to read the entire script needlessly:

Now let’s go through a last example. The script below can be used to return the maximum value
reached by an array (vector). Notice that the script's execution mode is set to Manual, so it can be
recalled at any time, in any parts of the Project. For instance, it can be recalled in a Monitor Object
to display the maximum value reached by a MultiSlider's sliders. This is done by changing the
script's arguments (array) by (MultiSlider.x).

86

87

Chapter 12 - Object Reference

12.1 Breakpoint

The Breakpoint Object is a multi-segment envelope editor, which assigns each finger to track one
of a number of points (up to 64) in a rectangular space. If the edit Option is activated, new points
can be created in real-time by double-touching the object’s surface. By default the object
constraints a point’s horizontal displacement so that it does not travel further than its left
neighbour (x[2]>=x[1]>=x[0]), but that can be deactivated by ticking the free form Option.

Variables

x A vector containing the points’ horizontal positions.

y A vector containing the points’ vertical positions.

Properties

Name Name of the Object, also used as its default OSC address.

Label If checked, the Object’s name is displayed on the Object.

Live Edition If checked, new points can be added by double-touching the
object’s surface.

Points Number of points (1 to 64).

Coordinates If checked, x and y coordinates are displayed when touched.

Background Choose the color of all the points except the first, together with the
outline around the Breakpoint.

First point Choose the first point’s color with the color picker.

Light

Can be a constant, a vector or any mathematical expression and
controls the luminosity of the points. -2 means black, +2 means
white, and you can choose any decimal number in-between.

88

Behavior

Grid
If checked, the range of values produced by the Breakpoint is
quantized into [grid] steps. The maximum number of steps for the
Breakpoint’s axis is 33.

Free Form

By default the object constraints a point’s horizontal displacement
so that it does not travel further than its left neighbour
(x[2]>=x[1]>=x[0]). If the Free Form option is checked, points can be
displaced freely on the horizontal axis.

Physics

• None

Points follow finger positions immediately. Attraction and Friction
parameters are ignored.

• Interpolate

Points follow the fingers’ positions according to the value of
Attraction. Larger values for attraction (up to 1) cause a point to
move to a finger position more quickly. As the Attraction value is
lowered, the points take longer to arrive at the finger position.
When Attraction is set to 0, points cannot be moved by your
fingers.

• Mass-Spring

Attraction and Friction are both active. Attraction works as
described above under Interpolation. Friction ranges between 0
and 1. Lower values of friction mean that if a point is moving it will
tend to keep moving. With a value of 0, the points will essentially
never stop moving. At a value of 1, a point will move only where
you place with your finger. Values of 1 for Attraction and Friction
are essentially the same as if Physics is set to Interpolate.

• Super-Spring
The segments between points also behave as springs, whose initial
and resting lengths are set by the Rest parameter.

Attraction The amount of attraction the cursors (your fingers) have on the
points.

Friction The amount of friction the Object’s surface applies on the points.

Speed
This value multiplies the points’ speed after Physics computation by
a user-defined expression. Input a singleton for the same effect on
all points, otherwise input a vector.

Rest When Super-Spring mode is enabled, the rest (0 to 1) is the value of
the initial and resting lengths of the segments between the points.

HoldX
If 0, this has no effect. Any value greater than 0 freezes the
respective point on its current position on the x-axis. The y-axis
remains active. Use a vector, if you want to affect specific points.

HoldY
If 0, this has no effect. Any value greater than 0 freezes the
respective point on its current position on the y-axis. The x-axis
remains active. Use a vector, if you want to affect specific points.

89

Attributes

color {integer*,integer*} color of the background and first point

coordinates 0 or 1 coordinates off/on

editable 0 or 1 live edition off/on

free 0 or 1 free form off/on

grid 0 or 1 grid off/on

grid_steps {1 to 33, 1 to 33} number of grid steps on the x and y axis

label 0 or 1 label off/on

name text get object name only

nbr 1 to 64 number of points

physic 0 to 3 physics mode

rect {X,Y,W,H} object’s position and dimensions

zoom 1 to 50 zoom in object

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

90

12.2 Container

Containers can enclosed any number of objects inside them, including other Containers. A
Container can also be made tabbed by ctrl-clicking/right-clicking on it and choosing the option
Make tabbed. Additional tabs can then be adjoined with the option Add tab, and their respective
content displayed by touching the corresponding tab. The tabs’ order can be modified by ctrl-
clicking/right-clicking within a Container and choosing Bring up or Bring down.

Properties

Name The Container’s name (used as a prefix for addressing the Objects
inside the Container, as in Container/Fader.x).

Lock A locked Container prevents editing and display of its content in the
Project panel.

Transparent If checked, the Objects lying “under” the Container (but not
belonging to its content) are shown and the Container’s frame is not
displayed anymore.

Color The color of the Container’s frame.

Attributes

color integer* color of the container

label 0 or 1 label off/on

name text Container name

rect {X,Y,W,H} object’s position and dimensions

tabbar 0 or 1 tabbar off/on

transparent 0 or 1 transparent off/on

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

91

12.3 Custom Button

The Custom Button can act as a pad or switch. You can set the text of the button for on and off
state. Another option is to have the state displayed by two different geometric forms to be chosen
among.

Variables

x The state of the button.

Properties

Name The name of the Object, also used as its default OSC address.

Style Off A menu for choosing how the Off state is depicted. Choose
between text or symbols. If text is chosen, a whitespace can be
used in the text entry.

Style On A menu for choosing how the On state is depicted.

Font A menu for choosing the font size for the text. The font size
ranges from 8pt to 24pt.

Alignment A graphical menu for choosing the position of the text within the
boundaries of the Object. You get a choice between 9 different
positions. This feature does not work for the symbols.

Color Off/On Dial in the color for the two respective button states.

Light Can be a constant or any mathematical expression and controls
the luminosity of your button. -2 means black, +2 means white,
and you get to choose any decimal number in-between.

Behavior

Capture If Capture is checked, an Object will only react to cursors created
inside its area. Even if the cursor later leaves the Object for
another position, it will remain in control of the original Object,
until it is destroyed eventually. When Capture is off, the original
behavior is restored, meaning an Object will react to whatever
cursor is present at any moment in its area.

Mode A menu for choosing if the Button works as a Switch or a Pad. A
Switch changes state on touch and doesn’t change back on
removal of the finger. A Pad changes its state back if you remove
your finger.

92

Attributes

behavior 0 or 1 switch or pad mode

bitmap {0 to 14,0 to 14} decoration bitmap in off state, in on state

capture 0 or 1 capture off/on

color {integer*,integer*} color off state, color on state

label_off text button text in off state

label_on text button text in on state

name text Object name

outline 0 or 1 outline off/on

rect {X,Y,W,H} object’s position and dimensions

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

93

12.4 Fader

 The Fader tracks your finger with a virtual cap and generates a value corresponding to the position
of the cap on the fader. The Fader can be oriented vertically or horizontally. Grab and drag a corner
to change its orientation.

Variables

x The location of the cap. When the cap is at the top or right-most position
of the fader (depending on orientation), the value is 1 by default. When it
is at the bottom or at the left-most position, respectively, the value is 0.

z A flag variable for detecting if the Fader is being touched. 1 if touched, 0
if untouched. This is useful to emulate fader touch of control surfaces.

Properties

Name The name of the Breakpoint Object, also used as its default OSC address.

Label If checked, the Object’s name is displayed in the Interface.

Value If checked, the current value of the Fader is displayed in the Interface. In
addition, you can enter a formula for how the value is displayed. This
does not affect the actual value sent by the Fader, which remains
between 0 and 1.

Unit This user-specified text is appended at the end of the value display. Use it
to specify the type of value, as in dB or ms.

Precision Specifies the number of decimal places for the value display. The default
value is 3 and the maximum number is 6. This setting has no influence on
the actual output of the Object. You have to scale the output using
expressions or on the Target side.

Color Pick a color for the fader’s body, its cap always keeps the pink outline.

94

Behavior

Grid If checked, the range of values produced by the Fader is quantized into
[grid] steps. The maximum number of steps for the Fader is 33.

Capture If Capture is checked, an Object will only react to cursors that were
created inside its area. Even if the cursor later leaves the Object for
another position, it will remain in control of the original Object, until it is
destroyed eventually. When Capture is off, the old school way from
previous versions is restored, meaning an Object will react to whatever
cursor is present at any moment in its area.

Cursor Mode

• Limited The Fader will respond to a new cursor only if the original one has been
destroyed (i.e. finger is raised)

• Get Newer Whenever a new cursor appears inside the Object’s area, it gains full
control of the Object

• Barycentric Each cursor, old or new, has the same amount of influence on the Object.

• Cap Only The Object acts like a conventional fader that doesn’t react to cursors
outside of the cap area

Physics

• None The Fader cap tracks one finger immediately. If other fingers touch the
fader, they are ignored.

• Interpolate The cap moves according to the value of Attraction from its current
location to the location of your finger. Larger values for attraction (up to
1) cause the cap to move to the new finger location more quickly. When
Attraction is set to 0, the cap cannot be moved by your finger.

• Mass-Spring Attraction and Friction are both active. Friction ranges between 0 and 1.
Lower values of friction mean that if the cap is moving it will tend to keep
moving. With a value of 0, the cap will never stop moving. At a value of 1,
the cap exactly follows your finger. Values of 1 for Attraction and Friction
are essentially the same as if Physics is set to None.

Please consider that Lemur will send the Fader’s position constantly with
lower values of Attraction and Friction in Mass-Spring mode.

Attraction The amount of attraction the cursor (your finger) has on the Fader

Friction See Mass-Spring above

95

Attributes

capture 0 or 1 capture off/on

color integer* color of the object

cursor 0 to 3 cursor mode

grid 0 or 1 grid off/on

grid_steps 1 to 33 number of grid steps

label 0 or 1 label off/on

physic 0 to 2 physics mode

precision 0 to 6 decimal places of displayed value

name text Object name

rect {X,Y,W,H} object’s position and dimensions

unit text unit of displayed value

value 0 or 1 value off/on

zoom 1 to 50 zoom in object

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

96

12.5 Knob

The Knob Object emulates two types of knobs: Classic knobs constrained between a min and max
value (0 and 1 by default), and endless encoders that can reach any value through multiple
successive turns.

Variables

x The current value of the knob, based on absolute angle position
in Classic mode, or rotation count in Endless mode.

Properties

Name The name of the Knob Object, also used as its default OSC
address.

Endless Knob If checked, the knob switches to endless mode.

Label If checked, the Object’s name is displayed above the knob.

Value If checked, the current value of the Knob is displayed in the
Interface. In addition, you can enter a formula for how the value is
displayed. This does not affect the actual value sent by the Knob,
which remains between 0 and 1.

Unit This user-specified text is appended at the end of the value
display. Use it to specify the type of value, as in dB or ms.

Precision Specifies the number of decimal places for the value display. The
default value is 3 and the maximum number is 6. This setting has
no influence on the actual output of the Object. You have to scale
the output using expressions or on the Target side.

Background Pick the Knob’s background color.

Foreground Pick the Knob’s foreground color.

97

Behavior

Grid If checked, the range of values produced by the Knob is
quantized into [grid] steps. The maximum number of steps for
the Fader is 33.

Capture If Capture is checked, an Object will only react to cursors that
were created inside its area. Even if the cursor later leaves the
Object for another position, it will remain in control of the
original Object, until it is destroyed eventually. When Capture is
off, the old school way from previous versions is restored,
meaning an Object will react to whatever cursor is present at any
moment in its area.

Cursor Mode

• Limited The Fader will respond to a new cursor only if the original one has
been destroyed (i.e. finger is raised)

• Get Newer Whenever a new cursor appears inside the Object’s area, it gains
full control of the Object

• Barycentric Each cursor, old or new, has the same amount of influence on the
Object.

• Cap Only The Object acts like a conventional fader that doesn’t react to
cursors outside of the cap area

Physics

• None The Fader cap tracks one finger immediately. If other fingers
touch the fader, they are ignored.

• Interpolate The cap moves according to the value of Attraction from its
current location to the location of your finger. Larger values for
attraction (up to 1) cause the cap to move to the new finger
location more quickly. When Attraction is set to 0, the cap cannot
be moved by your finger.

• Mass-Spring Attraction and Friction are both active. Friction ranges between 0
and 1. Lower values of friction mean that if the cap is moving it
will tend to keep moving. With a value of 0, the cap will never
stop moving. At a value of 1, the cap exactly follows your finger.
Values of 1 for Attraction and Friction are essentially the same as
if Physics is set to None.

Please consider that Lemur will send the Fader’s position
constantly with lower values of Attraction and Friction in Mass-
Spring mode.

Attraction The amount of attraction the cursor (your finger) has on the Fader

Friction See Mass-Spring above

98

Attributes

color {integer*,integer*} color of background, color of foreground

cursor 0 to 2
cursor mode – Limited, Barycentric, Get
Newer

grid 0 or 1 grid off/on

grid_steps 1 to 33 number of grid steps

label 0 or 1 label off/on

mode 0 or 1 polar or linear

name text Object name

physic 0 to 2
physics mode – None, Interpolate, Mass-
Spring

precision 0 to 6 decimal places of displayed value

rect {X,Y,W,H} object’s position and dimensions

unit text unit of displayed value

value 0 or 1 value off/on

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

99

12.6 Leds

The Leds Object is a two-dimensional array of Leds. It can be a single led or a whole matrix of them,
all with their individual light and value parameters. Remember that those properties can be set to
vectors when dealing with several columns or rows of Leds.

The Leds are transparent to touch but not transparent in terms of display. This means you can
implement switch or pad functionality by placing a hidden Switches or Pads Object underneath
the Leds.

Properties

Name The name of the Leds Object, also used as its default OSC address.

Label If checked, the Object’s name is displayed above the Leds.

Transparent If checked, the Leds’background is transparent.

Value In Bargraph mode this value represents the percentage of the
Leds being switched on. If Bargraph mode is off, only 1 and 0 are
accepted as values. If you send a single value (0,1) it will switch all
Leds to their on or off colors. If you have multiple rows/columns,
you can use a vector to individually address the Leds.

Columns The number of columns of Leds contained in the Object. Only 16
columns of Leds can be set.

Rows The number of rows of Leds contained in the Object. Only 16
rows of Leds can be set.

Multicolor If checked, the ‘colors’ attribute of the Object can be set to a
different value for each Led.

BarGraph The Bar Graph mode makes a matrix or vector of Leds act as your
typical bar graph: the Leds work together to graphically display
the current value.

Color Off Pick a color for the Leds’ off-state.

Color On Pick a color for the Leds’ on-state.

Light Can be a constant, a vector or any mathematical expression and
controls the luminosity of your Objects. -2 means black, +2 means
white, and you can choose any decimal number in-between.

100

Attributes

bargraph 0 or 1 bargraph off/on

color {integer*,integer*} color off, color on

colors {integer*,integer*, . . } vector of colors for multicolor use

column 0 to 16 number of columns

label 0 or 1 label off/on

name text Object name

rect {X,Y,W,H} object’s position and dimensions

row 0 to 16 number of rows

transparent 0 or 1 transparent off/on

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

101

12.7 Menu

The Menu Object is a “pop-up” menu selection tool. It can hide and display a list of up to 32
individual text items. By default the object outputs the index of the selection.

Variables

selection The current index of the selection (1,2,3,4…)

Properties

Name The name of LemurMenu Object, also used as its default OSC
address.

Scale Output Scale Output to Midi values.

Transparent If checked, the Object’s background becomes transparent.

Font Text content font size.

Alignment A graphical menu for choosing the position of the text within the
boundaries of LemurMenu’s cells.

Color Color of the the Object

Items A list for editing the menu’s content.

Attributes

color integer* object’s color

items {text,text…} menu items

name text Object name

rect {X,Y,W,H} object’s position and dimensions

scale 0 or 1 scale output off/on

transparent 0 or 1 transparent off/on

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

102

12.8 Monitor

The Monitor produces no data when you touch it. Its purpose is to display information sent to
Lemur by your computer.

Variables

none

Properties

Name The name of LemurMenu Object, also used as its default OSC
address.

Label If checked, the Object’s name is displayed above the value.

Value The checkbox is not functional. The text field next to Value
represents the monitor’s default value. Since any value can be
sent to the monitor, there is no 0-1 limitation.

Unit Appends arbitrary text to the end of the value display.

Precision Number of floating-point digits that appear. A precision of 0
displays only the integer part of numbers the monitor receives.

Font A menu for choosing the font size for the label and value of the
Monitor. The font size ranges from 8pt to 24pt.

Alignment A graphical menu for choosing the position of the text within the
boundaries of the Object. You get a choice between 9 different
positions.

Transparent If checked, only the label and the value is displayed and the
Monitor’s background becomes transparent. This also makes it
possible to use the Monitor as a text label anywhere in the
Interface.

Color Pick the Object’s color.

103

Attributes

color integer* color of the object

label 0 or 1 label off/on

name text get Object name

precision 0 to 6 decimal places of displayed value

rect {X,Y,W,H} object’s position and dimensions

transparent 0 or 1 transparent off/on

unit text unit of displayed value

value 0 or 1 value off/on

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

104

12.9 MultiBall

The MultiBall Object assigns each finger to track one of a number of balls (up to 10) in a rectangular
space. Balls can either always be visible or only appear when you touch the space; the latter is
called ephemeral mode. The brightness of the balls is sent as the z variable in the Object.

Variables

x A list of the horizontal positions of all the balls.

y A list of the vertical positions of all the balls.

z A list of the brightness values of all the balls. Brightness values
change only when the MultiBall Object is in ephemeral mode.

Properties

Name The name of the MultiBall Object, also used as its default OSC
address.

Label If checked, the Object’s name is displayed in the Interface.

Numbers If checked, a running number is displayed on each ball.

Multilabel If checked, individual labels may be used for the Objects parts.

Multicolor If checked, individual colors may be used for the Objects parts.

Balls Number of balls (1 to 10)

Color Pick a color for the MultiBall’s frame

Behavior

Grid If checked, the range of values produced by the Balls is quantized
into [grid] steps. The maximum number of steps for the MultiBall
axis is 33.

Ephemeral If checked, the MultiBall behaves in a mode where the balls
disappear until you touch it with one or more fingers. The
brightness of the balls becomes the value of the z variable of the
Object, and the way the brightness changes over time is
controlled by an ADSR envelope (described below). When

105

Ephemeral is not checked, the balls are always visible and their z
values are constantly 1.

Capture If Capture is checked, an Object will only react to cursors that
were created inside its area. Even if the cursor later leaves the
Object for another position, it will remain in control of the
original Object, until it is destroyed eventually. When Capture is
off, an Object will react to whatever cursor is present at any
moment in its area.

Cursor Mode

• Limited The Balls will respond to a new cursor only if the original one has
been destroyed (i.e. finger is raised)

• Barycentric Each cursor has the same amount of influence on the Object.

• Get Oldest Ball If all the balls are currently “possessed” by your fingers and a new
cursor comes in, it will take control of the oldest ball (the one that
lived the longest in Ephemeral, or the first ball in normal mode).

• Get Closest Ball If all the balls are currently “possessed” by your fingers and a new
cursor comes in, it will take control of the closest ball.

Physics

• None Balls move to finger positions immediately, and the settings of
Attraction and Friction are ignored.

• Interpolate Balls move toward finger positions according to the value of
Attraction. Larger values for attraction (up to 1) cause a ball to
move to a finger position more quickly. As the Attraction value is
lowered, the balls take longer to arrive at the finger position.
When Attraction is set to 0, your fingers can’t move balls.

• Mass-Spring Attraction and Friction are both active. Attraction works as
described above under Interpolation. Friction ranges between 0
and 1. Lower values of friction mean that if a ball is moving it will
tend to keep moving. With a value of 0, the balls will essentially
never stop moving. At a value of 1, a ball will move only where
you touch with your finger. Values of 1 for Attraction and Friction
are essentially the same as if Physics is set to Interpolate.

Attraction Amount of attraction the cursor (your fingers) have on the Balls.

Friction See Mass-Spring above

Speed This value multiplies the balls’ speed after Physics computation
by a user-defined expression. Input a singleton for the same
effect on all balls, otherwise input a vector. Experiment with
negative values for crazy effects.

Attack Applies only when using ephemeral mode. The Attack value
specifies the number of seconds over which the z variable
(brightness of a ball) increases from its initial value of 0 to a
maximum of 1 after you touch the screen. As an example, if the

106

Attack value is 0, the ball will be at full brightness the moment
you touch the screen.

Decay Applies only when using ephemeral mode. The Decay value
specifies the number of seconds over which the brightness will
decrease after the initial Attack portion of the envelope has
completed. During the Decay portion of the envelope, the z
variable (brightness of a ball) will decrease from 1 to the level set
by the Sustain value.

Sustain Applies only when using ephemeral mode. The sustain value is
the level (between 0 and 1) at which the brightness of the ball
will remain as long the MultiBall Object is tracking your finger
within its space. The Sustain level is reached after the Attack and
Decay portion of the envelope have completed. If your finger lifts
up from the touch surface before the completion of the Attack
and/or Decay portion of the envelope, the Release portion of the
envelope is triggered immediately after the Decay portion
completes, and the brightness ultimately goes to 0.

Release Applies only when using ephemeral mode. The Release value
specifies the number of seconds over which the brightness of a
ball will decrease from its Sustain level to 0, starting at the
moment that you lift up (“release”) your finger from the touch
surface.

Hold Its effect is similar to a sustain pedal, freezing the Object’s state as
long as its value is 1. When set to 0, if has no effect. This means
this parameter should be used with a mathematical expression
depending on other Objects. For instance, if you have a Switch
Object named Sustain in your interface, you can set the hold
parameter of a Pad to Sustain.x so the Switch gets the ability to
freeze the current lightness.

HoldX If 0, this has no effect. Any value greater than 0 freezes the
respective ball on its current position on the x-axis. The y-axis
remains active. Use a vector, if you want to affect specific balls.

HoldY If 0, this has no effect. Any value greater than 0 freezes the
respective ball on its current position on the y-axis. The x-axis
remains active. Use a vector, if you want to affect specific balls.

Attributes

ball_enable 0 or 1 ball enable off/on

capture 0 or 1 capture off/on

color integer* color of the Objects frame

colors {integer*,integer*, . . } vector of colors for multicolor use

cursor 0 or 1 cursor off/on

107

ephemere 0 or 1 ephemeral off/on

grid 0 or 1 grid off/on

grid_steps {1 to 33, 1 to 33} number of grid steps on the x and y axis

label 0 or 1 label off/on

labels 0 or 1 vector of labels for multilabel use

multicolor 0 or 1 label off/on

multilabel 0 or 1 multilabel off/on

nbr 1 to 10 number of balls

physic 0 to 2
physics mode – None, Interpolate, Mass-
Spring

polyphony 0 or 1 polyphony off/on

rect {X,Y,W,H} object’s position and dimensions

zoom 1 to 50 zoom in object

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

108

12.10 MultiSlider

The MultiSlider Object tracks movement across an array of sliders. You can “wipe” all the faders to a
set value with one horizontal gesture. This is pretty hard to do with real—or virtual—faders.

Variables

x A list of the vertical positions of all the individual sliders.

Properties

Name The name of the Object, also used as its default OSC address.

Horizontal Swaps the MultiSlider’s orientation from vertical to horizontal.

Bipolar If checked, the Object’s zero position is the slider’s mid-length.

Label If checked, the Object’s name is displayed in the Interface.

Slider Number of sliders (1 to 64)

Gradient If checked, a gradient is applied on the Object’s color.

Multicolor If checked, the ‘colors’ attribute is active and can be used to
change the colors of individual sliders.

Color Drag the color bar to change the “thematic” color of the sliders.

Light Can be a constant, a vector or any mathematical expression and
controls the luminosity of your Objects. -2 means black, +2 means
white, and you get to choose any decimal number in-between.

Behavior

Grid If checked, the range of values produced by the Sliders is
quantized into [grid] steps. The maximum number of steps for the
Fader is 33.

Capture If Capture is checked, an Object will only react to cursors that
were created inside its area. Even if the cursor later leaves the
Object for another position, it will remain in control of the original
Object, until it is destroyed eventually. When Capture is off, the
old school way from previous versions is restored, meaning an
Object will react to whatever cursor is present at any moment in
its area.

109

Physic If checked, the MultiSlider emulates the physics of an Object
similar to a plucked string anchored at the left and right sides of
the array of sliders. Your fingers “pluck” the string by lifting it up
in one or more places. The values of the sliders ramp up to meet
your fingers and track them as they move. Lifting your finger(s)
from the surface releases the string, and its subsequent behavior
is determined by the Tension, Friction, and Height values.

Tension A value between 0 and 1 corresponding to the tension on a
string. As tension increases, the frequency of oscillation of the
string increases. Increasing the tension is something like turning
the tuning peg of a guitar to raise the pitch of a string.

Friction A value between 0 and 1 corresponding to the damping on a
string. As friction increases, the damping on the oscillation
increases. With large friction values, the string returns to its
resting position quickly. With smaller friction values, the string
may oscillate for a long time.

Height When Tension is enabled, the height (0 to 1) is the value of the
initial and resting position of the string.

Attributes

bipolar 0 or 1 capture off/on

capture 0 or 1 capture off/on

color integer* color of the object

colors {integer*,integer*,…} vector of colors for individual sliders

grid 0 or 1 grid off/on

grid_steps 1 to 33 number of grid steps

horizontal 0 or 1 horizontal off/on

label 0 or 1 label off/on

multicolor 0 or 1 multicolor off/on

nbr 1 to 64 number of sliders

physic 0 or 1 physics off/on

rect {X,Y,W,H} object’s position and dimensions

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

110

12.12 Pads

The Pads Object is a two-dimensional array of buttons that are triggered by touch. They are
intended to trigger events instead of represent state, since they eventually return to an “off” value
after you touch them.

Variables

x A list of the envelope (brightness) values of the pads.

Properties

Name Name of the Pads Object, also used as its default OSC address.

Label If checked, the Object’s name is displayed in the Interface.

Numbers If checked, each pad is labelled with a number corresponding to
the order in which its value is transmitted, starting with 0.

Columns The number of columns of pads contained in the Object (max 16).

Rows The number of rows of pads contained in the Object (max 16).

Multilabel If checked, the ‘labels’ attribute is active, and each pad can be
labelled individually.

Multicolor If checked, the Object’s ‘colors’ attribute is active, and each Pad
can take its own color value.

Color Off Color for the Object’s off state.

Color On Color for the Object’s on state.

light Can be a constant, a vector or any mathematical expression and
controls the luminosity of your Objects. -2 means black, +2 means
white, and you get to choose any decimal number in-between.

Behavior

Capture If Capture is checked, an Object will only react to cursors that
were created inside its area. Even if the cursor later leaves the
Object for another position, it will remain in control of the
original Object, until it is destroyed eventually. When Capture is
off, an Object will react to whatever cursor is present at any

111

moment in its area.

Attack The Attack value specifies the number of seconds over which the
x variable (pad brightness) increases from its initial value of 0 to a
maximum of 1 after you touch the screen. As an example, if the
Attack value is 0, the pad will be at full brightness the moment
you touch the screen. An attack value of 10 means the pad will
take 10 seconds to reach the full value.

Decay The Decay value specifies the number of seconds over which the
x variable (pad brightness) will decrease after the initial Attack
portion of the envelope has completed. During the Decay portion
of the envelope, the x variable (pad brightness) will decrease
from 1 to the level set by the Sustain value.

Sustain The Sustain value is the level (between 0 and 1) at which the x
variable (pad brightness) will remain as long your finger is
touching the pad. The Sustain level is reached after the Attack
and Decay portion of the envelope have completed. If your finger
lifts up from the touch surface before the completion of the
Attack and/or Decay portion of the envelope, the Release portion
of the envelope is triggered immediately after the Decay portion
completes, and the brightness ultimately goes to 0.

Release The Release value specifies the number of seconds over which
the x variable (pad brightness) will decrease from its Sustain level
to 0, starting at the moment that you lift up (“release”) your finger
from the touch surface.

Hold Its effect is similar to a sustain pedal, freezing the Object’s state as
long as its value is 1. When set to 0, if has no effect. This means
this parameter should be used with a mathematical expression
depending on other Objects. For instance, if you have a Switch
Object named Sustain in your interface, you can set the hold
parameter of a Pad to Sustain.x so the Switch gets the ability to
freeze the current lightness.

Attributes

capture 0 or 1 capture off/on

color {integer*,integer*} color off state, color on state

colors {integer*,integer*} Off state color values for each Pads

column 1 to 16 number of columns

label 0 or 1 grid off/on

labels {Text,Text,..} vector of labels for multilabel use

112

multicolor 0 or 1 Multicolor off/on

multilabel 0 or 1 Multilabel off/on

rect {X,Y,W,H} object’s position and dimensions

row 1 to 16 number of rows

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

113

12.13 Range

The Range Object is a slider with adjustable length. Touch either end to change the width/height
of the range.

Variables

x A vector containing the lower and higher positions.

Properties

Name The name of the Range Object, also used as its default OSC
address.

Horizontal Swaps the orientation of the Range from vertical to horizontal.

Label If checked, the Object’s name is displayed in the Interface.

Color Pick the color of the Object

Light Can be a constant, a vector or any mathematical expression and
controls the luminosity of your Objects. -2 means black, +2 means
white, and you get to choose any decimal number in-between.

Behavior

Grid If checked, the range of values produced by the Range sliders is
quantized into [grid] steps. The maximum number of steps for the
Fader is 33.

Capture If Capture is checked, the Object will only react to cursors that
were created inside its area. Even if the cursor later leaves the
Object for another position, it will remain in control of the original
Object, until it is destroyed eventually. When Capture is off the
Object will react to whatever cursor is present at any moment in
its area.

Physics If checked, the Range boundaries snap back to user-defined
positions (that can evolve based on other variables) when you
release them. Physics behavior is determined by the Tension,
Friction, and Min_Height and Max_Height values.

Tension A value between 0 and 1 corresponding to the tension of the
string that links the boundaries to their snap-back positions. You
can enter a vector to specify different tensions for the two
extremities.

114

Friction A value between 0 and 1 corresponding to the damping on a
string. As friction increases, the damping on the oscillation
increases. With large friction values, the string returns to its resting
position quickly. With smaller friction values, the string may
oscillate for a long time. You can enter a vector to specify different
frictions for the two extremities.

Min_height When Physics mode is enabled, the height (0 to 1) is the value of
the initial and resting position of the mininum boundary of the
Range.

Max_height When Physics mode is enabled, the height (0 to 1) is the value of
the initial and resting position of the maximum boundary of the
Range.

Drag If drag is not zero, the current range can be dragged with the
finger without changing its limits. You may use this with a switch
to toggle the behavior of your Range Object (put Switch.x into the
drag field). The field can contain any expression.

Attributes

capture 0 or 1 capture off/on

color integer* color of the object

grid 0 or 1 grid off/on

grid_steps 1 to 33 number of grid steps

horizontal 0 or 1 horizontal off/on

label 0 or 1 label off/on

name text gets name of Object only – no set

physic 0 or 1 physics off/on

rect {X,Y,W,H} object’s position and dimensions

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

115

12.14 RingArea

The RingArea tracks your finger inside a circular space. It reports the X and Y coordinates of a ball
that can be programmed to have a variable degree of attraction toward a central point. You can
specify the location of the attraction point within the circular space.

Variables

x The horizontal position of the ball.

y The vertical position of the ball.

Properties

Name The name of the RingArea Object, also used as its default OSC
address.

Label If checked, the Object’s name is displayed above the circular
space.

Color Pick a color for the RingArea.

Behavior

Capture If Capture is checked, the Object will only react to cursors that
were created inside its area. Even if the cursor later leaves the
Object for another position, it will remain in control of the
original Object, until it is destroyed eventually. When Capture is
off, the Object will react to whatever cursor is present at any
moment in its area.

Attraction A value from 0-1 representing the speed of the ball from its
attraction point to your finger when you touch the Object, and
from your finger to the attraction point when you release your
finger.

Friction A value from 0-1 representing the stickiness of the movement to
either your finger or the attraction point. Lower values of friction
make the ball overshoot the attraction point when it approaches,
causing bouncing and/or oscillation.

Attractor X A value from 0-1 representing the horizontal location of the
attraction point within the Object’s rectangle. A zero value of

116

Attractor X is at the left edge and a value of 1 is at the right edge.

Attractor Y A value from 0-1 representing the vertical location of the
attraction point within the Object’s rectangle. A zero value of
Attractor Y is at the bottom edge and a value of 1 is at the top
edge.

Attributes

capture 0 or 1 capture off/on

color integer* color of the object

label 0 or 1 label off/on

name text gets name of Object only – no set

rect {X,Y,W,H} object’s position and dimensions

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

117

12.15 SignalScope

The SignalScope displays values of other Objects and variables on Lemur. The “trace” shows a
recent history of the value of what you are monitoring. It is transparent to touch, meaning that you
can place it on top of Objects and still interact with them.

Properties

Name The name of the SignalScope Object, also used as its default OSC
address.

Label If checked, the Object’s name is displayed in the Scope area.

Mode XY If checked, the signal scope shows both an X and Y value plotted
against each other. If unchecked, the X value is time, shifting Y
values to the left.

Transparent If checked the Scope’s frame is no longer visible.

Color Pick a color for the Scope and its frame.

Behavior

X If Mode XY is enabled, X can be the value of a variable or a
constant; otherwise it is assigned to time against which the Y
value will be plotted.

Y A variable or constant expression that will be periodically
evaluated and plotted against X. For example, to plot the x
variable of a Fader Object called chan1, enter chan1.x in the text
field.

Time base Corresponds to the time (in seconds) displayed on the scope. As
the Time base increases, individual elements of the graph will
decrease in width as more of the “past” is shown.

118

Attributes

color integer* color of the object

label 0 or 1 label off/on

mode 0 or 1 mode XY off/on

rect {X,Y,W,H} object’s position and dimensions

transparent 0 or 1 transparent off/on

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

119

12.16 SurfaceLCD

The SurfaceLCD Object emulates traditional control surfaces' LCD by making use of the MIDI input
capabilities of Lemur to display track names, parameter changes, timecode, all updated in real-time
by your Digital Audio Workstation. The SurfaceLCD is Mackie Control surface protocol compatible.

Properties

Name The name of the SurfaceLCD Object, also used as its default
OSC address.

Transparent If checked, the background of the SurfaceLCD disappears to
obtain a see-through appearance.

Target This lets you select the MIDI Target number for information
display. First, setup a MIDI target with an input of your liking
inside the Lemur Editor settings. Then, configure your DAW to
send Mackie Control surface data to this MIDI input. Refer to
the bundled examples for mappings of control Objects
compatible with control surfaces protocols known by your
DAW.

Display

Main LCD In this mode, the Object displays Track Information.

Timecode In this mode, the Object displays up-to-date Timecode
information.

Assignment In this mode, the Object displays a three characters code
describing the current assignment of other mapped control
Objects.

Attributes

color integer* color of the object

display

mode 0 or 1 mode XY off/on

rect {X,Y,W,H} object’s position and dimensions

target 0 or 7 MIDI Target

transparent 0 or 1 transparent off/on

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

120

12.17 Switches

The Switches Object is a two-dimensional array of toggle switches, representing and transmit one
or more on-off states.

Variables

x A list of the on-off values of the switches in the Object. The list
starts with the top-left corner, and traverses the first row before
starting at the beginning of the second row.

Properties

Name Name of the Object, also used as its default OSC address.

Label If checked, the Object’s name is displayed in the Interface.

Numbers If checked, each switch is labelled with a number corresponding
to the order in which its value is transmitted, starting with 0.

Radio In Radio mode, only one switch can be turned on at any particular
time. Turning on any switch turns all the others off.

Columns Number of columns of switches contained in the Object (max 16).

Rows Number of rows of switches contained in the Object (max 16).

Multicolor If checked, the Switches ‘colors’ attribute is active, and color
values can be set for each Switch individually.

Color Off Pick a color for the Object’s off-state

Color On Pick a color for the Object’s on-state

light Can be a constant, a vector or any mathematical expression and
controls the luminosity of your Objects. -2 means black, +2 means
white, and you get to choose any decimal number in-between.

Behavior

Capture If Capture is checked, an Object will only react to cursors that
were created inside its area. Even if the cursor later leaves the
Object for another position, it will remain in control of the
original Object, until it is destroyed eventually. When Capture is
off, an Object will react to whatever cursor is present at any
moment in its area.

121

Paint If this flag is active, you can “paint” on an array of switches by
dragging your finger around. If paint is inactive, a touch only
toggles the switch you hit first and dragging the finger around
has no further effect.

Attributes

capture 0 or 1 capture on/off

color {integer*,integer*} color off state, color on state

colors {integer*,integer*, . . } Off state color values for each Switches

column 1 to 16 number of columns

label 0 or 1 label off/on

labels {Text,Text,..} vector of labels for multilabel use

multicolor 0 or 1 Multicolor off/on

multilabel 0 or 1 Multilabel off/on

paint 0 or 1 paint off/on

radio 0 or 1 radio off/on

rect {X,Y,W,H} object’s position and dimensions

row 1 to 16 number of rows

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

122

12.18 Text

The Text Object produces no data when you touch it. Its purpose is to display arbitrary text
including whitespace characters typed in via the Lemur Editor.

Properties

Name The name of the Text Object, also used as its default OSC address.

Transparent If checked, only the text is displayed and the Object’s background
becomes transparent.

Text Type in any text you want the Object to display for you.

Font A menu for choosing the font size for the displayed text. The font
size ranges from 8pt to 24pt.

Alignment A graphical menu for choosing the position of the text within the
boundaries of the Object. You get a choice between 9 different
positions.

Color Pick a color for the Object

light Can be a constant, a vector or any mathematical expression and
controls the luminosity of your Objects. -2 means black, +2 means
white, and you get to choose any decimal number in-between.

Attributes

color integer* color of the object

content text displayed text

rect {X,Y,W,H} object’s position and dimensions

transparent 0 or 1 transparent off/on

*the value of the color attribute can range from 0 to 8355711: See the RGB(r,g,b) or HSV(h,s,v)
internal functions to specify color component arguments in a 0 to 1 range eg RGB(0.5,0.5,0.5).

123

Chapter 13 - Parser Reference
13.1 Vectors and Singletons
The Parser handles two kinds of variables: vectors and singletons. A vector (also known as an array
or list), is a mathematical value that holds more than one element (number), while a singleton is a
value containing a single value:

a vector : {0, 2, 0.5}

a singleton : 3

 Lemur expression syntax allows operations on vectors and individual access to their elements. If
you want to access the items of a vector separately, use brackets [].

a = {1,3,4}

a[0] = 1

a[2] = 4

This also works for multiple items:

a[0,2] = {1, 4}

Typically, the Variables of the Breakpoint, Leds, MuliSlider, MultiBall, Pads and Switches Objects are
vectors when the Object features sub-objects (when they feature more than one ball, slider, pad
etc..). For example, the x coordinates of the balls in a MultiBall object are accessed as

• myball.x[0]

• myball.x[1]

• etc.

Now let’s look at what happens to a vector when we use it in an expression and combine it with
operators, singletons or other vectors.

Assume we have a MultiSlider object called moo and a MultiBall object called bar. Below we have
listed some expressions involving vectors and the various results that they would produce.
Assume moo.x contains {0.2 0.3 0.6} and bar.x contains {0.25 0.5}

• moo.x * 3 Multiply all elements of moo.x by 3, returns {0.6 0.9 1.8}

• moo.x + 2 Add 2 to all elements of moo.x, returns {2.2 2.3 2.6}

• moo.x>0.5 Return a vector consisting of 1 or 0 depending on whether moo.x is greater
than 0.5, returns {0. 0. 1.}

• moo.x + bar.x Add all elements of two vectors. The size of the result is the smaller of the
two input vectors. Returns {0.45 0.8}

• moo.x[0] The first (index 0) element of moo.x, returns 0.2

• bar.x[1] The second element of bar.x, return 0.5

• moo.x[0.5] Interpolated value between bar.x[0] and bar.x[1], returns 0.3

• {moo.x, bar.x} Concatenates moo.x and bar.x, returns {0.2 0.3 0.6 0.25 0.5}

• {moo.x[0],bar.x[1.5]} Creates a new vector consisting of the first element of moo.x and
the average of the second and third elements of bar.x, returns {0.2 0.625}

124

13.2 Lemur Internal clock
Lemur works with a clock speed of 60 ticks per second. This means that every 16 ms all states of
Objects, Expressions and Functions are evaluated. These 16 ms constitute one Lemur frame.

There are some special considerations, though, as Lemur’s brain tries to avoid unnecessary work.
When it comes to deciding whether the value of a Variable is going to be transmitted via MIDI or
OSC, Lemur first checks if the Variable has changed since the last frame. If it hasn’t changed, it’s not
going to be transmitted.

13.3 Built-In Battery Variable
This variable will return the current charge of the battery as a float between 0.00 and 1.00. This can
be used to give yourself a battery warning to avoid any chance of running out mid-gig.

13.4 Built-In Accelerometer Variable
This variable will return the data from the device’s built-in accelerometer as an x,y,z array. Try
simply displaying accelerometer in a Monitor object then move the iPad or iPhone in all directions.
Each axis is returned as a float between -1.00 and 1.00.

The accelerometer variable can be used for real-time control of Lemurs objects and expression
allowing for ‘non-touch control’ of your Lemur. It retuns a vector of {x,y,z} values accessable
directly as accelerometer[0], accelerometer[1] etc.

13.5 Built-In Time Variable
If you look at the Internal folder in the Project panel, you will see a pre-defined Variable called time.

The time Variable is a millisecond value you can use for creating time-varying behavior in Lemur. It
represents the number of milliseconds since Lemur was turned on and it resets to 0 every hour. The
time value is intended to be manipulated by mathematical Operators, particularly by multiplication
(*), division (/), and by the modulo operator (%, used to calculate the remainder of a division)

By multiplying time by a value greater than 1, you produce a sequence of values that increase
faster than clock time. By multiplying time by a value less than 1, you will produce a sequence of
values that increase more slowly than clock time. You can use the modulo Operator (%) to create a
repeating sequence of values that resembles a sawtooth wave. For example time % 1 produces a
ramp from 0 to 999 that occurs over the course of a second.

125

Let ‘s use a Monitor Objects to display the values of the following expressions:

Frames = (time % 0.25) * 100

Hours = floor(time/3600)

Minutes = floor(time/60) % 60

Seconds = floor(time % 60)

Create global Variables for each of these Expressions, then use these Variables in other Lemur
Objects. For example, here is the Properties Browser view for a monitor Object that would display a
global Seconds variable.

Even if you are not connected to a Lemur, the resulting Monitor Object will begin changing
immediately after you enter a time-based variable.

Another interesting use of the time variable would be the generation of an LFO:

LFO = sin(time * 2) *0.5 + 0.5

You can display this in a SignalScope to see what it does.

You can assign time-based variables to properties in Lemur Objects (such as Friction or the ADSR
envelopes) to create Objects that change over time.

13.6 Built-in current_interface Variable
The internal folder also features the current_interface Variable, which simply gives you the Index
of the currently displayed interface.

13.7 Built-in midi_clocks Variable
The Lemurs Internal folder also features the midi_clocks variable:

126

The midi_clocks variable can sync to incoming MIDI Clock signal on the 8 MIDI Targets ‘ inputs.
Let’s check it out with Ableton Live: make a connection between Lemur’s MIDI Target 0 Input and

Live Sync Output:

MIDI ticks are sent 24 times per quarter note for synchronization purposes.

Now use a Monitor Object to display the MIDI clock ticks on Target 0:

127

13.8 Arithmetic Functions
abs(a) : absolute value
abs(-2) = 2

ceil(a) : rounded value to higher integer
ceil(1.2) = 2
ceil(1.8) = 2

clamp(a, min, max) : constrains a between min max
clamp(Fader.x, 0.2, 0.3) =
0.2 if Fader.x<=0.2
0.3 if Fader.x>=0.3
Fader.x otherwise

floor(a) : rounded value to the lower integer
floor(1.2) = 1
floor(1.8) = 1

max(a,b) : max of a and b
max(0.1, 0.8) = 0.8

min(a,b) : min of a and b
min(0.1, 0.8) = 0.1

pow(a,b) : a to the power of b
pow(2,4) = 16

rand() : returns a random value between 0 and 1 at
 each frame (a Lemur frame is 16ms)

range(a, min, max) : stretches a Variable value that normally goes from
 0 to 1, to range [min, max]

range(Fader.x, 10, 100) returns 10 if Fader.x == 0,
returns 100 if Fader.x == 100 or returns value ranged between 10 and 100

round(a) : rounded value to the closest integer

round(1.2) = 1
round(1.8) = 2

sign(a) : -1 if a<0, +1 if a>=0

sign(-12) = -1
sign(0) = +1
sign(12) = +1

sqrt(a) : square root of a
sqrt(64) = 8

128

13.9 Object-related Functions

breakpointat(x[],y[],phase) : returns the position of a point along a Breakpoint’s
segment

findobject(name) : selects an Object within a tree structure (project,
interface or container)

getattribute(object,name) : returns the value of the Object’s attribute ‘name’

129

getattributelist(object) : returns the Object’s attribute list

getexpression(object, name) : returns the value of the expression ‘name’

getfirst(object) : selects the first Object within a tree structure
(project, interface or container)

getnext(object) : selects the next Object within a tree structure
(project, interface or container)

getobject() : returns the object within which the script calling the
function resides. This acts effectively as a ‘self’
reference.

getobjectrect(object) : returns the Object’s position and dimensions as
{X,Y,W,H}

getparent(object) : returns an Object’s Parent Target (next higher
hierarchy level)

HSV(h,s,v) : converts Hue, Saturation, Value indices
(hue,saturation,value) to a single color value that the
parser understands.

Lemur Color is represented by a single value from 0 to 8355711. The HSV(h,s,v) function calculates
the appropriate single value, where H, V and V are values between 0.00 and 1.00.

Hue is the color, (usually in Degrees), Saturation is the density of color and Value is the brightness.
Hue range is 0-Red through the Color Wheel to 1-Red, lower Saturation gives greyer color, higher
Saturation gives vivid color and lower Value gives darker colors to black, higher Value are brighter.

The HSV(h,s,v) function may be used to obtain a value for when setting any Object’s color attribute.

RGB(r,g,b) : converts 3 RGB primary color indices (Red, Green,
Blue) into a single value that the parser understands

Lemur Color is represented by a single value from 0 to 8355711. The RGB(r,g,b) function calculates
((R*127 x 2^16) + (G*127 x 2^8) + B*127), where R, G and B are values between 0.00 and 1.00.

RGB color allows you to describe a color by it’s component amounts of Red, Green and Blue.

The RGB(r,g,b) function is used to obtain a value for when setting any Object’s color attribute .

130

selectinterface(index) : displays the selected Interface

selecttab(object, index) : displays the selected tab (Container Object)

setattribute(object, name, value) : sets an Object’s attribute ‘name’ to the desired value

setexpression(object, name, value) : sets an Objects’s expression to the given value

setobjectrect(object, rect[]) : sets an Object’s position and dimensions to
{X,Y,W,H}

show(object,state) : displays (state=1) or hides (state=0) an object

131

13.10 Scripting Output Functions

ctlout(target,ctrl,val,chan) : outputs a Control Change MIDI message with
specified Target, Controller number, value and
channel.

keycomboout(target,ctrl,alt,shift,key) : outputs a simultaneous key strokes combination to
the defined KbMouse Target.

keyout(target,key,state) : outputs a single key stroke to the defined KbMouse
Target.

midiout(target,msg[]) : outputs the defined MIDI message to the defined
MIDI Target.

mouselbutton(target,state) : outputs a left mouse button click to the specified
KbMouse Target.

mousemove(target,x,y) : outputs a x and y mouse movement to the specified
KbMouse Target.

noteout(target,note,vel,chan) : outputs a Note On MIDI message with specified
Target, Controller number, value and channel.

oscout(target,address,args[]) : outputs the defined OSC command to the specified
address and Target.

132

13.11 Vectorial Functions

arraytostring(array[]) : converts an array to a string of values

diff(a) : returns the difference between the consecutive
elements of an array

if a={w,x,y,z}

diff(a)={w, x-w, y-x, z-y}

Example:

diff({1,2,3,4,5,6,7,8})={1,1,1,1,1,1,1,1}

fill(a,value,size) : returns a vector with "size" items

the vector is filled from the left with n items = "value"

the number of items set to "value" depends on the a argument : a threshold between 0 and 1

when a = 0, there's no filling at all, and the vector is full of zeros

when a = 1, the vector is completely filled with items = value

when a = 0.5, the vector is half filled

Examples :

fill(1, 0.524, 4) = {0.524, 0.524, 0.524, 0.524}

fill(0, 0.524, 4) = {0, 0, 0, 0}

fill(0.5, 0.524, 4) = {0.524, 0.524, 0, 0}

firstof(a) : returns the position of the first non-null item in a
vector

This is often used with switches in radio mode : firstof(x) returns the position of the enabled switch
in the matrix

Examples:

firstof({0,0,1}) = 2

firstof({1,0,0}) = 0

note: if the vector only contains null items, the function returns the size of the vector

firstof({0,0,0}) = 3

interlace(a,b) : interlace 2 vectors to form a single vector

if a={1,2,3}, b={5,6,7}

interlace(a,b)={1,5,2,6,3,7}

133

interlace3(a,b,c) : interlace 3 vectors to form a single vector

if a={1,2,3}, b={5,6,7} and c={8,9,10}

returns {1,5,8,2,6,9,3,7,10}

nonnull(array) : returns the positions of non-null items in an array

nonnull({0,1,1,0})={1,2}

note: if the vector only contains null items, the function returns the size of the vector

nonnull({0,0,0}) = 3

replace(a,b,position) : takes an array, and replace the items starting at
“position” with b (b can be an array or a singleton)

Examples:

replace({0,0,0,0}, {12,2}, 0) = {12, 2, 0, 0}

replace({0,0,0,0}, 0.15, 3) = {0, 0, 0, 0.15}

If position is not an integer, the parser converts it using the floor function (next lower integer)

set(a,value,position) : takes an array, and change the item at "position" to
"value" (position can be an array or a singleton)

Examples:

set({0,0,0,0}, 12, 0) = {12, 0, 0, 0}

set({0,0,0,0}, 12, {0,2}) = {12, 0, 12, 0}

If position is not an integer, the parser converts it using the floor function (next lower integer)

sizeof(a) : returns the size of a vector

stretch(a,size) : stretches a value or a range and returns a vector

If a is a single value (or a vector with a single item), the function returns a vector with "size" items
containing that value

stretch(0, 12) = {0,0,0,0,0,0,0,0,0,0,0,0}

after that, you could do :

set(stretch(0, 12), 1, time%12), this returns:

{1,0,0,0,0,0,0,0,0,0,0,0} when time<1

{0,1,0,0,0,0,0,0,0,0,0,0} when time<2 0,0,1,0,0,0,0,0,0,0,0,0} when time<3 etc..

If a is a vector with more than one value, the function stretches the range over "size" items :

stretch({1,4}, 4} = {1,2,3,4}

stretch({0,10},11} = {0,1,2,3,4,5,6,7,8,9,10,11}

134

subarray(array,start,length) : chops an array into a defined sub-array

if a={1,2,3,4,5,6,7,8}

subarray(a,2,3)={3,4,5}

sumof(a) : sums all the items of an array

wrap(a,size) : creates a new array of length ‘size’, repeating the
input array if necessary.

if a={1,2,3,4,5}, wrap(a,8)={1,2,3,4,5,1,2,3}

13.12 Trigonometric functions

acos, asin, atan, cos, sin, tan,

log, log10, exp, pi are the same as their mathematical counterparts.

angle(x,y) : returns the angle in radians formed by a vector of
coordinates (x,y) to the positive x axis

Example:

Create a RingArea

Create a variable inside : a = angle(x-0.5, y-0.5)

this returns the angle position of the ball from the centre of the RingArea

norm(x, y) : length of a vector of coordinates (x,y)

Example :

create a Multiball with 2 balls

variable inside : distance = norm(x[1]-x[0], y[1]-y[0])

this returns the distance between ball 0 and ball 1

135

13.13 Operators

Arithmetic

+ add

- subtract

* multiply

/ divide

% modulo

++ increment

-- decrement

Comparison

> greater than

< smaller than

>= greater or equal to

<= smaller or equal to

== equal to

Logic

When using logic and conditions in the parser, (not 0) is true and 0 is false.

!a NOT a

1 when a = 0

0 when a!=0

a!=b returns 1 if a!=b (i.e a=2, b=4) or 0 if a==b

a&&b logical AND

1 && 1 = 1

1 && 0 = 0

a<b Less than : 1 if a < b

 0 otherwise

a>b Greater than : 1 if a>b

0 otherwise

136

a==b Equal to : 1 if a==b

0 otherwise

a>=b Greater than or equal to: 1 if a>=b

0 otherwise

a<=b Less than or equal to: 1 if a<=b

0 otherwise

a || b logical OR

1 || 0 = 1

1 || 1 = 1

a?b:c conditional statement, which translates as: “if (a is true) then b else c “

Example:

Creating an Expression "e" in a MultiBall and setting its value to Pad.x?x:y will mean that :

if Pad.x != 0 (i.e Pad is pressed), e=x

if Pad.x == 0 (i.e Pad is not pressed), e=y

You could for example map the e Expression to a Control Change mapped to the x axis when the
pad is pressed, and y axis when th pad is released

Assignment

Assignment operators allow the same variable name to contain different values at different times
during the script execution.

= gets set to

+= add and assign

-= subtract and assign

/= divide and assign

*= multiply and assign

Bitwise

Bitwise operators allow operations on array patterns at the level of their individual elements.

& binary AND

| binary OR

<< left shift

>> right shift

137

Chapter 14 - MIDI Mapping Message Reference
The MIDI section of the Lemur Editor Mapping Panel offers a wide range of MIDI messages your
Objects’ Variables can directly be assigned to. This chapter provide standard definitions of these
messages as given by the MIDI specifications. Of course it is up to you to use the various messages
to your liking. In a world of flexible and modular software, MIDI messages tend to lose their original
meanings. In modular software like Reaktor or Max/MSP you can use any MIDI message to trigger
or change anything you want.

14.1 Note Off
The Note Off message is sent when a key is released.
It is not widely implemented. Note On with a velocity of 0 is generally used to indicate a Note Off.

pitch: Dial in the MIDI note number. If the value is
a vector the second field will be extrapolated
automatically. You can override this setting by
using your own value.

velocity: The Variable chosen from the
Variable menu that is converted to velocity values
is shown here.

Scale: Type in the desired target scaling for the MIDI messages. Possible values range
from 0 to 127.

Channel: Dial in the MIDI channel. If the value is a vector the second field will be extrapolated
automatically. You can always override this setting by putting in your own value.
Possible values range from 1 to 16.

14.2 Note On
The Note On is sent when a key is depressed.
Note On with a velocity of 0 is generally sent when a key is released to indicate a Note Off.

pitch: Dial in the MIDI note number. If the value is
a vector the second field will be extrapolated
automatically. You can override this setting by
using your own value.

velocity: The Variable chosen from the
Variable menu that is converted to velocity values
is shown here.

Scale: Type in the desired target scaling for the MIDI messages. Possible values range
from 0 to 127.

Channel: Dial in the MIDI channel. If the value is a vector the second field will be extrapolated
automatically. You can always override this setting by putting in your own value.
Possible values range from 1 to 16.

138

14.3 Key Pressure (Polyphonic Aftertouch)
Key Pressure, also called polyphonic aftertouch, gives the keyboarder a continuous controller for
every key he had on his keyboard. It is used via pressing down on the different keys.
This works great for spreading out vector values to multiple key pressure values.

key: Dial in the MIDI note number. If the
value is a vector the second field will be
extrapolated automatically. You can override
this setting by using your own value.

pressure: The Variable chosen from the
Variable menu that is converted to key pressure
values is shown here.

Scale: Type in the desired target scaling for the MIDI messages. Possible values range
from 0 to 127.

Channel: Dial in the MIDI channel. If the value is a vector the second field will be extrapolated
automatically. You can always override this setting by putting in your own value.
Possible values range from 1 to 16.

14.4 Control Change
The Control Change data is used to produce pseudo-continuous data (ranging from 0 to 127).

 controller: Dial in the MIDI controller
number. If the value is a vector the second field
will be extrapolated automatically. You can
always override this setting by putting in your
own value. Possible values range from 0 to 127

value: The Variable chosen from the Variable
menu that is converted to the controller values
is shown here.

Scale: Type in the desired target scaling for the MIDI messages. Possible values range
from 0 to 127.

Channel: Dial in the MIDI channel. If the value is a vector the second field will be extrapolated
automatically. Possible values range from 1 to 16.

14.5 Program Change
Used to change the patch number of synthesizers.

preset: The variable chosen from the Variable
menu that is converted to program change values
is shown here.

Scale: Type in the desired target scaling for the
MIDI messages. Possible values range from 0 to
127.

Channel: Dial in the MIDI channel. If the value is a vector the second field will be extrapolated
automatically. Possible values range from 1 to 16.

139

14.6 Channel Pressure
Another continuous controller used on a per MIDI channel basis.

pressure: The Variable chosen from the
Variable menu that is converted to channel
pressure values is shown here.

Scale: Type in the desired target scaling for the
MIDI messages. Possible values range from 0 to
127.

Channel: Dial in the MIDI channel. If the value is a vector the second field will be extrapolated
automatically. Possible values range from 1 to 16.

14.7 Pitch Bend
PitchBend is used to indicate a change in the pitch wheel. It is a 14 bit value providing a higher
resolution (0 - 16383) than normal 7 bit control change messages (0 – 127).

 bend: The Variable chosen from the Variable menu
that is converted to program change values is
shown here.
Scale: Type in the desired target scaling for the
MIDI messages. Note that pitch bend values range
from 0 to 16383.

Channel: Dial in the MIDI channel. If the value is a vector the second field will be extrapolated
automatically. Possible values range from 1 to 16.

14.8 System Exclusive
Used for custom data that is not covered by normal MIDI messages. The first part is usually a series
of value representing an ID. If the device or software recognizes the ID as its own, it will listen to
the rest of the message. Otherwise, the message will be ignored.

 Trigger: The Variable chosen from the
Variable menu that is converted to SysEx
messages is shown here.

Data: Type in the desired SysEx string you want to send. Please have a look at the MIDI
Target’s documentation for details about possible SysEx messages.

14.9 Song Position
A 14 bit value that holds the number of MIDI beats (1 beat= six MIDI Timing Tick) since the start of
the song.

Position: The Variable chosen from the
Variable menu that is converted to song position
values is shown here.

Scale: Type in the desired target scaling for the position pointer. Note that song position
pointer values range from 0 to 16383.

140

14.10 Song Select
The Song Select specifies which sequence or song is to be played.

Song: The Variable chosen from the Variable
menu that is converted to song number values is
shown here.

Scale: Type in the desired target scaling for the song number. Possible values range from
0 to 127.

14.11 Bus Select
The Bus Select message specifies to which MIDI output further data should be sent.

Bus: The Variable chosen from the Variable
menu that is converted to bus number values is
shown here.

Scale: Type in the desired target scaling for the bus number. Possible values range from
0 to 127.

14.12 Tune Request
Used to trigger the tuning of oscillators in analog synthesizers.

Trigger: The Variable chosen from the Variable
menu that is used to trigger tune request
messages is shown here.

14.13 Timing Tick
Sent 24 times per quarter note for synchronization purposes. Build your own MIDI clock.

Trigger: The Variable chosen from the Variable
menu that is used to trigger timing tick messages
is shown here.

14.14 Start Song
Used to start the song or sequence from the beginning.

Trigger: The Variable chosen from the Variable
menu that used to trigger start song messages is
shown here.

141

14.15 Continue Song
Used to start the song or sequence from where it was stopped.

Trigger: The Variable chosen from the Variable
menu that is used to trigger tune request
messages is shown here.

14.16 Stop Song
Used to stop the song or sequence.

Trigger: The Variable chosen from the Variable
menu that is used to trigger stop song messages
is shown here.

14.17 Active Sensing
When initially sent, the receiver will expect to receive another Active Sensing message each 300ms
(max), or it will be assume that the connection has been terminated. At termination, the receiver
will turn off all voices and return to normal (non-active sensing) operation.

Trigger: The Variable chosen from the Variable
menu that is used to trigger active sensing
messages is shown here.

14.18 System Reset
Resets all receivers in the MIDI chain to power-up status.

 Trigger: The Variable chosen from the Variable
menu that is used to trigger system reset
messages is shown here.

142

Appendix I – Keyboard Shortcuts

New Project Command/ Control+N

Open Project Command/ Control+O

Save Project Command/ Control+S

Save Project As Command/ Control+ Shift+S

Import Module Command/ Control+I

Export Module Command/ Control+E

Lemur Settings Alt+S

Lemur Synchro Command/ Control+R

Lemur Connection Alt+C

MIDI Map Alt+M

Create Interface Command/ Control+Shift+I

Create Object Command/ Control+Shift+O

Create Expression Command/ Control+Shift+E

Create Custom MIDI Command/ Control+Shift+M

Create Executable Script Command/ Control+Shift+X

Cut Command/ Control+X

Copy Command/ Control+C

Paste Command/ Control+V

Undo Command/ Control+Z

Redo Command/ Control+Y

Toggle to Run mode – Execute. Hold E

143

Appendix II – Object Attributes
Object Attributes are editable via the setattribute(object,’name’,value) function or via an OSC
command in the form /OSC_Addr/Object @attribute val ie. /Container/Fader @grid 1.

Breakpoint color, coordinates, editable, free, grid, grid_steps, label, name, nbr,

physic, rect, zoom

Container color, label, name, rect, tabbar, transparent

CustomButton behavior, bitmap, capture, color, label_off, label_on, name, outline,
rect

Fader capture, color, cursor, grid, grid_steps, label, name, physic,
precision, rect, unit, value, zoom

Knob color, cursor, grid, grid_steps, label, mode, name, physic, precision,
rect, type, unit, value

Leds bargraph, color, colors, column, label, multicolor, name, rect, row,
transparent

Menu color, items, name, rect, scale, transparent

Monitor color, label, name, precision, rect, transparent, unit, value

MultiBall capture, color, colors, cursor, ephemere, grid, grid_steps, label,
labels, multicolor, multilabel, name, nbr, physic, polyphony,
pressure, rect, zoom

MultiSlider bipolar, capture, color, colors, gradient, grid, grid_steps, horizontal,
label, multicolor, name, nbr, physic, rect

Pads capture, color, colors, column, label, labels, multicolor, multilabel,
name, rect, row

Range capture, color, grid, grid_steps, horizontal, label, name, physic, rect

RingArea capture, color, label, name, rect

SignalScope color, label, mode, name, rect, transparent

SurfaceLCD color, display, name, rect, target, transparent

Switches capture, color, colors, column, label, labels, multicolor, multilabel,
name, paint, radio, rect, row

Text color, content, name, rect, transparent

These are the attributes reported by the getattributelist(Object) function.
The getattribute and setattribute functions are used to obtain or modify their values.

144

Appendix II – Object Variables
Object Variables are accessable via dot notation ie if(Fader.z ==1) etc , and are set by assignment
operators. ie. Fader.x =1

Breakpoint x

y
Vector containing the points’ horizontal positions
Vector containing the points’ vertical positions.

Container none

CustomButton x The state of the CustomButton

Fader x
z

Location of the cap. 0 is bottom/left -1 is top/right.
A ‘flag’ variable indicating whether the Fader is touched.

Knob x Current value of Knob – Absolute position or rotational
count in Endless mode.

Leds none

Menu selection Current index of Menu selection

Monitor none

MultiBall x
y
z

Vector containing the horizontal position of the balls.
Vector comtaining the vertical positions of the balls
Vector of brightness values of balls, in ephemeral mode.

MultiSlider x Value or Vector of vertical positions of the Sliders.

Pads x Value or Vector of the brightness value of the Pads.

Range x Vector containing the low and high positions of the Range

RingArea x
y

The horizontal position of the RingArea ball
The vertical position of the RingArea ball

SignalScope none

SurfaceLCD none

Switches x Value or Vector of on-off values for Switches

Text none

These are the inbuilt variables of the Lemur Objects
‘Dot.notation’ can be used to obtain or modify their values.

145

Appendix III – Parser Quick Reference
Operators

Assignment Comparison

= to assign
+= add and assign
-= subtract and assign
/= divide and assign
*= multiply and assign

== equal to
> greater than
< smaller than
>= greater than or equal to
<= smaller than or equal to

Arithmetic Bitwise

+ add
- subtract
* multiply
/ divide
% modulo
++ increment
-- decrement

& binary AND
| binary OR
<< left SHIFT
>> right SHIFT
 Bitwise operators allow operations on
vector/array patterns at the level of their
individual elements. Consult a programming
reference for further details on their use.

Logic

&l& logical AND
! logical NOT

Logical Functions evaluate conditions to be 0 as
False and ‘not 0’ as True.

|| logical OR
a?b:c conditional expression

Conditional expression is similar, but not
identical to the if,then,else. statement

Functions	
Arithmetic
abs(a) Absolute value
ceil(a) Round-up to integer value
clamp(a,min,max) Constrain between values
floor(a) Round-down to integer value
max(a,b) Return highest value
min(a,b) Return lowest value
pow(a,b) Value a to the power of b
rand() Returns value 0 to 1 each frame
range(a,min,max) Maps a 0 to 1 value to min,max
round(a) Round to closest integer
sign(a) Returns -1 for negative, or + 1
sqrt(a) Return the square root of a

Internal
accelerometer iPad accelerometer {x,y,z}
battery iPad Battery level - 0 to 1
current_interface Index of current interface
midi_clocks MIDI ticks variable – 24 ppqn
time mSec since turned on, resets hourly

146

Others
breakpoint([x],[y],phase) Get position of point along segment
findobject(‘object’) Select an Object in Project structure
getattribute(object,’name’) Get value of Object’s ‘attribute’
getattributelist(object) Get Objects list if attributes
getexpression(object,’name’) Get value of Object’s ‘expression’
getfirst(object) Get first Object in Project structure
getnext(object) Get next Object in Project structure
getobject() Get reference to self Object
getobjectrect(object) Get Object position and dimensions
getparentobject(object) Get Object’s Parent
HSV(h,s,v) Lemur Color in HSV values (0 - 1)
RGB(r,g,b) Lemur Color in RGB values (0 - 1)
selectinterface(index) Display an Interface
selecttab(container,index) Display a tab of a Container
setattribute(object,’name,’value) Set Objects ‘attribute’ to value
setexpression(object,’name’,value) Set an Objects expression to value
setobjectrect(object,rect[]) Set Object position and dimensions
show(object,state) Display or hide an Object

Trigonometric
acos, asin, atan, cos, sin tan,
log, log10, exp, pi Standard mathematical functions

angle(x,y) Angle in Radians
norm(x,y) Length of vector co-ordinates

Vectorial
arraytostring(array[]) Converts the array[] to a String
diff(array) Difference between array{} elements
fill(array,value,size) Fills an array with value to size
firstof(array) Position of first non-null or size
interlace(a,b) Interlace 2 vectors
interlace3(a,b,c) Interlace 3 vectors
nonnull(array) Vector os positions of non-null items
replace(array,b,position) Replace items in array with b
set(array,value,position) Set position in array to value
sizeof(array) Returns of the array
stretch(a,size) / (array,size) Stretch value or range to a vector
subarray(array,start,length) Subarray of array of length from start
sumof(array) Sum of all items in array
wrap(array,size) Wrap an array to a size

147

Appendix IV – MIDI Quick Reference
Lemur is MIDI compliant and is capable of sending and receiving all standard MIDI messages.

The following MIDI messages may be configured directly via the MIDI Mapping panel.

MIDI MESSAGE Hex Data 1 Data 2 Remarks
Note Off	 80	 Note: 0 - 127	 Velocity: 0 - 127 Channel 1 - 16	
Note On	 90	 Note: 0 - 127	 Velocity: 0 - 127 Channel 1 - 16
Key Pressure	 A0	 Key# 0 - 127	 Value: 0 - 127 Channel 1 - 16
Control Change	 B0	 CC# 0 - 127	 Value: 0 - 127 Channel 1 - 16
Program change	 C0	 Pgm# 0 - 127	 None Channel 1 - 16
Channel Pressure	 D0 Value: 0 - 127	 Value: 0 - 127 Channel 1 - 16
Pitch Bend	 E0	 0 – 16383	 14 bit : Channel 1 - 16
System Exclusive	 F0	 Device ID data	 Sysex Data
Song Position	 F2	 0 – 16383	 14 bit : 1 beat = 16 Timing Ticks
Song Select	 F3	 0 - 127	 None
Bus Select	 F5	 0 - 127	 None
Tune Request F6	 None	 None Request Tuning Data
Timing Tick	 F8	 None	 None 24 pulses per quarter note
Start Song	 FA	 None	 None Start song or sequence	
Continue Somg	 FB	 None	 None Continue song or sequence	
Stop Song	 FC	 None	 None Stop song or sequence	
Active Sensing	 FE	 None	 None
System Reset	 FF	 None	 None Reset all MIDI devices	

It is also possible to construct more complex MIDI messages via Lemur’s scripting environment.
RPN/NRPN, 14bit CC’s are all easily prgrammed. MIDI Out can also be directly programmed.

It is beyond the scope of this document to provide in-depth information for all these messages and
their possible use. Please refer to the MIDI Manufacturers Association http://www.midi.org/ for the
official MIDI specification, or the documentation of the software or hardware you are using for
more specific information.

148

MIDI Implementation Chart
Lemur

Transmit Recognise Remarks
1. Basic Information
MIDI channels 1 - 16 1 - 16
Note numbers 0 -127 0 - 127
Program change 0 – 127 0 - 127 * Response is scriptable
Bank Select Yes Yes Via CC #0 - * Response is scriptable
Note-On Velocity Yes Yes * Not Velocity sensitive - scriptable
Note-Off Velocity Yes Yes * Not Velocity sensitive - scriptable
Channel Aftertouch Yes Yes * Not Aftertouch sensitive - scriptable
Poly (Key) Aftertouch Yes Yes * Not Aftertouch sensitive - scriptable
Pitch Bend Yes Yes 14 bit value
Active Sensing Yes Yes * Response is scriptable
System Reset Yes Yes * Response is scriptable
Tune Request Yes Yes * Response is scriptable
Universal System Exclusive: Yes Yes Transmit via Custom MIDI or via scripting

NRPNs Via Scripts Via Scripts MIDI Out is directly scriptable

2. MIDI Timing and
Synchronization
MIDI Clock / Timing Tick Yes Yes 24 ppqn – pulse per quarter note
Song Position Pointer Yes Yes 14 bit value – 1 beat=16 Timing Ticks
Song Select Yes Yes 0 - 127
Start
Continue
Stop

Yes
Yes
Yes

Yes
Yes
Yes

* Response is scriptable

MIDI Time Code
MIDI Machine Control
MIDI Show Control

3. Continuous Controllers
Control Number All All 0 – 127 : Bidirectional control

* Not Velocity sensitive -
scriptable

The Lemur Objects do not respond to velocity of finger taps,
but varying velocity values may be sent via scripting.

* Not Aftertouch sensitive -
scriptable

The Lemur Objects do not respond to pressure of finger taps,
but varying aftertouch values may be sent via scripting.

* Response is scriptable These messages are recognised and available for scripting.
They are not natively implemented but their response is scriptable.
ie. Lemur does not have ‘Banks’ and ‘Programs’ but this could be scripted.

149

Appendix V – Specifications
General

Lemur supports OSC and MIDI protocols over Wi-Fi. Lemur also supports CoreMIDI. You can use
any standard MIDI interface through the Apple Camera Connection Kit, or an iOS specific
audio interface such as iConnect MIDI. Some devices may not support all features such as sysex
data.

Lemur supports up to 16 different and simultaneous MIDI and OSC port targets - 8 MIDI & 8 OSC.

Specification
Certain technical limitations exist within the Lemur environment. Some of these figures will
be addressed in the near future, some later, some never.

• Menu object is currently set to maximum number of 32 items.

• Expression text length is currently set at maximum of 256 characters.

• Vector/List length in a script variable is currently set at a maximum of 256 elements.

• Multiline script length is currently set at a maximum of 4096 characters.

• Maximum number of entries in an array is currently set to 256 (maybe less when dealing
with long entries);

• MIDI System Exclusive message maximum size is currently 256 bytes.

• Maximum size limits also apply to OSC messages due to underlying transport packet size.

• Lemur Editor file size limit is currently set to approximately 16MB per project. This file size
limit is actually a different matter than the memory usage piechart.

The resulting file size is just the number of characters necessary to describe the project in
XML format. One project with many large MultiSliders will typically use more RAM, but that
will not necessarily translate to a large file size when saved to disk.

Exceeding these limits may lead to unpredictable behavior, or unacceptable syntax errors.

Also note, there is no mechanism at the time for OnLoad scripts to figure out which external
variables should be evaluated first. Scripts may run even though variables have not been filled yet,
i.e its own tiny script hasn't yet executed. Use variable declared internal to the script instead.

Dependencies on variables that hold constant numerical values, or arrays of constant numerical
values, pose no problem as they are recognized as such during script compilation. Unfortunately
strings and arrays of strings are not recognized as constants. (That's why they don't display in blue
in the project browser)

Bottom line is, OnLoad scripts relying on external numerical constants should all work fine, but
there can be issues when depending on more complex variables, or other scripts even.

	Table of Contents
	1. Welcome
	What Lemur is . . .
	About this manual

	2. Concepts
	Lemur Editor
	Projects
	Interfaces
	Modules
	Objects
	Variables
	Scripts
	OSC
	MIDI
	Lemur Daemon
	Targets

	3. Connection/Setup
	Wi-Fi MIDI or OSC
	USB MIDI - CoreMIDI
	Connection Problems?

	4. Software Install
	Lemur Daemon
	On Mac OS X
	Windows Install
	Lemur Daemon on Windows

	5. Lemur Editor
	Overview
	Header
	Lemur Panel
	Creation Panel
	Palette
	Library

	Project Panel
	Script Panel
	Objects Panel
	Properties Tab
	Behavior Tab

	Mapping Panel
	OSC Tab
	MIDI Tab

	Settings Menu
	Editor Tab
	Lemur Tab
	OSC Tab

	6. First Steps
	Connecting Lemur
	Creating an Interface
	Creating Objects
	Saving your Project
	Lemur's memory for Projects
	Changing Object Appearance
	Groups
	Configuring Object Behavior
	Using Containers
	Import and Export of Modules

	7. Mapping
	Setting up MIDI messages
	Simple MIDI mapping examples
	OSC - Open Sound Control
	Trigger Modes

	8. Targets Setup
	Lemur Daemon Targets
	Daemon Taegets Setup example
	OSC Targets

	9. Going Further with Lemur Editor
	Control Objects with Objects
	Making your own Object Variables
	Using Vector Variables
	Using Custom MIDI Messages
	Bidirectional Control
	Defining and Using Functions

	10. Multi-Line Scripts
	Creating a Script
	Script Execution
	Script Variables
	Attributes
	Built-in Functions and Operators
	Examples
	Color Coding in Scripts

	11. Advanced Scripting
	Conditional Statements
	Loops
	Return

	12. Object Reference
	Breakpoint
	Container
	CustomButton
	Fader
	Knob
	Leds
	Menu
	Monitor
	MultiBall
	MultiSlider
	Pads
	Range
	RingArea
	SignalScope
	SurfaceLCD
	Switches
	Text

	13. Parser Reference
	Vectors and Singletons
	Lemur Internal Clock
	Built-in Battery Variable
	Built-in Accelerometer Variable
	Built-in Time Variable
	Built-in current_interface Variable
	Built-in midi_clocks Variable
	Arithmetic Functions
	Object-related Functions
	Scripting Output Functions
	Vectorial Functions
	Trigonometric Functions
	Operators

	14. MIDI Mapping Message Reference
	Note Off
	Note On
	Key Pressure - Polyphonic Aftertouch
	Control Change
	Program Change
	Channel Pressure
	Pitch Bend
	System Exclusive
	Song Position
	Song Select
	Bus Select
	Tune Request
	Timing Tick
	Start Song
	Continue Song
	Stop Song
	Active Sensing
	System Reset

	Appendices
	I. Keyboard Shortcuts
	II. Object Attributes
	Object Variables
	III. Parser Quick Reference
	IV. MIDI Quick Reference
	MIDI Implementation
	V. Specifications
	Changelog

	Blank Page

