
CANVAS	
 OBJECT	
 3	

INITIALISATION	
 3	

MIDI/OSC	
 MAPPING	
 3	

VARIABLES	
 3	

PROPERTIES	
 3	

BEHAVIOR	
 3	

ATTRIBUTES	
 4	

ON	
 CURSOR	
 SCRIPTS	
 4	

ON	
 CURSOR	
 DOWN	
 4	

ON	
 CURSOR	
 MOVE	
 4	

ON	
 CURSOR	
 UP	
 4	

ON	
 REDRAW	
 SCRIPTS	
 4	

CANVAS	
 PARSER	
 REFERENCE	
 5	

CANVAS	
 CLEARING	
 5	

CANVAS	
 STATE	
 5	

SAVING	
 AND	
 RESTORING	
 STATES	
 5	

EDITING	
 CANVAS	
 STATE:	
 TRANSFORMATIONS	
 6	

EDITING	
 CANVAS	
 STATE:	
 STYLES	
 6	

EDITING	
 CANVAS	
 STATE:	
 LINE	
 STYLES	
 7	

EDITING	
 CANVAS	
 STATE:	
 TEXT	
 STYLE	
 7	

EDITING	
 CANVAS	
 STATE:	
 SHADOW	
 STYLE	
 7	

GRADIENT	
 OBJECTS	
 7	

PATHS	
 8	

PATH	
 CREATION	
 9	

PATH	
 EDITING	
 9	

PATH	
 DRAWING	
 10	

PATH	
 UTILITY	
 FUNCTIONS	
 10	

TEXT	
 DRAWING	
 10	

FAST	
 DRAWING	
 FUNCTIONS	
 10	

CONTROLLING	
 CANVAS	
 REFRESH	
 RATE	
 11	

HIT	
 REGIONS	
 11	

SEQUENCER	
 OBJECTS	
 12	

OVERVIEW	
 12	

TIMING	
 AND	
 FRAMERATES	
 12	

CLOCK	
 12	

TRANSPORT	
 12	

ON	
 CLOCK	
 SCRIPTS	
 13	

PARSER	
 REFERENCE	
 13	

CUSTOM	
 MIDI	
 13	

STEPSWITCH	
 13	

OVERVIEW	
 13	

LAYOUT	
 14	

VARIABLES	
 14	

PROPERTIES	
 14	

BEHAVIOUR	
 15	

ATTRIBUTES	
 15	

STEPNOTE	
 15	

OVERVIEW	
 15	

VARIABLES	
 16	

PROPERTIES	
 17	

BEHAVIOUR	
 17	

ATTRIBUTES	
 17	

STEPSLIDER	
 18	

OVERVIEW	
 18	

VARIABLES	
 18	

PROPERTIES	
 18	

BEHAVIOUR	
 18	

ATTRIBUTES	
 19	

NEW	
 IN	
 LEMUR	
 5.0	
 19	

STRING	
 CONCATENATION	
 19	

REFERENCING	
 CHILD	
 OBJECTS	
 19	

 	

CANVAS	
 OBJECT	

Overview
Canvas is an object that lets you draw custom widgets with full multitouch support. The object is
adapted from the HTML5 Canvas element, which means that you can do cool stuff like animation,
shadows, transparency, etc. The Canvas object opens the door to a completely new Lemur
experience, where the appearance and behavior of objects can be designed to precisely match
your vision.

Canvas operates within the standard Lemur framework, introducing nearly 50 new scripting
functions. We’ve created a large amount of factory templates as well as tutorial projects to get
you started.

Initialisation	

In On Demand mode, the Canvas is drawn one single time when project is loaded. At that time,
variables may not be initialized yet, so they default to zero. If your draw() script relies custom
variables, you might encounter unexpected results (or simply a black Canvas). Using local
variables inside your init script instead of external variables ensures that the initial draw on load
will be successful.

	

MIDI/OSC	
 Mapping	

You can output data from a Canvas object in several ways. You can assign values to an variable.
Then, the variable can be mapped to a MIDI message, using the standard MAPPING window in
Lemur Editor. Feedback will also work, as long as your Canvas drawing scripts take the variable
into account when you draw your shapes. You can also use noteout() or ctlou() functions in your
Canvas scripts.

To send OSC messages from Canvas, you must use oscout(). If you want to receive OSC
feedback, create an On OSC script that listens to the same OSC address you specified with
oscout().

	

Variables	

There are no built-in variables in the Canvas object. All MIDI/OSC mapping must be done within
scripts or with custom variables.

Properties	

There are no built-in properties in the Canvas object besides Name and dimensions (X,Y,W,H).

Behavior	

Anti-Aliasing (Off, On)
Anti-aliasing produces better results at the cost of a lower framerate. Disabled by default.

Touch (No Touch, Mono-touch, Multi-touch)
Canvas can report single or multi-touch using On Cursor scripts.

Redraw (Always, On Demand)
Always: Canvas is drawn on every frame. This is the default refresh mode, useful when you are
animating shapes.

On Demand: Canvas is only drawn when a canvas_refresh() function is explicitly called. This is
useful to save memory when you don’t need any animation, for example a simple static shape.

Attributes	

aaLevel 0 or 1 anti-aliasing off or on
name text get object name
rect {X,Y,W,H} object’s position and dimensions 	

redrawMode 0 or 1 Always or On Demand redraw mode
touchSupport 0, 1 or 2 No Touch, Mono-touch or Multi-touch support

On	
 Cursor	
 Scripts	

Lemur 5.0 introduces three new script execution modes for handling touch points (cursors) in
Canvas scripts. These script execution modes will only be available if you create your script
inside the Canvas object.

On	
 cursor	
 down	

Script is executed as soon as any new cursor begins.

On	
 cursor	
 move	

Script is executed as any existing cursor moves.

On	
 cursor	
 up	

Script is executed as any cursor is released.

In all three cases, several variables are available inside the script: cursor, hit, x, y. If the Canvas
Touch attribute is set to Mono-touch or Multi-touch, the cursor variable identifies which cursor is
handled by this script instance. The x and y variables return the raw position of the cursor. See
the Parser Reference below for more information on hit regions.

On	
 Redraw	
 Scripts	

On Redraw scripts are executed when a canvas_refresh() command is called from another script.
See the Parser Reference below for more information on Canvas refresh.

CANVAS	
 PARSER	
 REFERENCE	

Canvas	
 Clearing	

Canvas clearing overwrite all or a portion of the pixels with transparent black (0,0,0,0). This also
deletes any existing Hit Regions in the cleared area.

IMPORTANT: If no clearing function is called at the start of a frame, the Canvas retains its
previous pixels, and any drawing function that is called will write on top of the old pixels. One will
generally call a clearing function at the start of a drawing script, unless an "additive" effect is
desired.

canvas_clear(c) clear the whole Canvas to transparent black

canvas_clearRect(c, x, y, width,
height)

clear a rectangular portion of the Canvas to transparent black, at origin (x, y)
with size (width, height)

Canvas	
 State	

The Canvas State contains various options that affect drawing, namely:

• current transformation (combination of translation/rotation/scaling operations)
• current stroking style
• current filling style
• current shadow style
• current font size
• current text alignment options

Saving	
 and	
 restoring	
 States	

The whole Canvas state can be saved, modified, and restored to a previous saved configuration
multiple times. Saving the Canvas State writes it on top of a "stack". Restoring the Canvas State
reads the state that is on top of the "stack".

Function Description Notes

canvas_save(c) save the current Canvas (c) state, by pushing it to the
top of the State stack

after the state is saved, it remains the
current state

canvas_restore(c) restore the current Canvas (c) state, by popping it from
the State stack the previous state is discarded

The Canvas State and stack of saved States is always cleared and reset to default at the
beginning of a frame. The following functions are used to modify the Canvas State.
 	

Editing	
 Canvas	
 State:	
 Transformations	

Each time a transformation function is called, it is combined to the current transformation by way
of matrix multiplication. The total Canvas transformation is then used when performing drawing
functions: fills and strokes.

IMPORTANT: transformations are actually performed in reverse order to how they were called.
For instance, calling the following functions in this order:
- canvas_scale
- canvas_rotate
before filling a path, will first rotate the path, then scale the result, and finally draw it.

Function Description
canvas_translate(c, x, y) apply translation transform on Canvas c by amount (x, y)

canvas_scale(c, x, y) apply scale transform on Canvas c from origin (0,0), with factor x and y

canvas_rotate(c, radians) apply rotate transform on Canvas c from center (0,0), by angle in radians

canvas_resetTransform(c) reset transformation of Canvas c to default ("identity")

Editing	
 Canvas	
 State:	
 Styles	

Fill and stroke styles are set separately. A style can be either a Color, or a Gradient Object.
A Color can be represented several ways :

style = 0.8
Single value: grayscale

style = {0.8, 1.0}
Array of 2 items: alpha, grayscale

style = {1.0, 0.4, 0.4}
Array of 3 items: red, green, blue

style = {1.0, 1.0, 0.0, 0.0}
Array of 4 items: alpha, red, green, blue
Gradient objects are described in a later section.

Function Description

canvas_setFillStyle(c, style) change fill style of Canvas c to style, where style is either a Color or Gradient
Object

canvas_setStrokeStyle(c, style) change stroke style of Canvas c to style, where style is either a Color or Gradient
Object

Editing	
 Canvas	
 State:	
 Line	
 Styles	

Several options exist to customize how lines and curves are drawn when stroking a path.

Function Description Notes
canvas_setLineWidth(c,
width)

set width of stroke lines in
pixels this is affected by the Canvas transform

canvas_setLineCap(c,
cap)

set cap style of lines: butt
(0), round (1), square (2)

see Canvas HTML spec for descriptions of Cap styles. One
can use special constant variables instead of numerical
values: lineCapButt, lineCapRound, lineCapSquare

Editing	
 Canvas	
 State:	
 Text	
 Style	

Function Description Notes
canvas_setFontSize(c, size) set font size used for text drawing

canvas_setTextAlign(c, align) set horizontal alignment used for text drawing:
0/textAlignLeft, 1/textAlignCenter, 2/textAlignRight

special constant variables can
be used instead of numerical
values

canvas_setTextBaseline(c,
baseline)

set baseline vertical position for text drawing:
0/textBaselineBottom, 1/textBaselineMiddle,
2/textBaseLineTop

special constant variables can
be used instead of numerical
values

	

Editing	
 Canvas	
 State:	
 Shadow	
 Style	

Shadows can be placed underneath any shape that is drawn when filling or stroking a Path. The
following functions can be used to control Shadows behaviour.
Function Description Notes
canvas_setShadowColor(c,
color) set the Shadow color of Canvas c to color color is initially transparent black, i.e no

shadows are displayed

canvas_setShadowBlur(c,
level)

set the Shadow blur level of
Canvas c to level from 0 to 100

level is 2 times the standard deviation of
the Gaussian blur, in pixels

canvas_setShadowOffset(c, x,
y)

set the Shadow 2D offset of Canvas c to
(x, y) initially set to (0,0)

	

Gradient	
 Objects	

The stroke or fill style of a Canvas can be set to a Gradient Object instead of a plain color. Two
functions exist to create Gradient Objects: one for linear gradients, the other for radial gradients.
Once a Gradient Object has been created, colors are added to it with another function, they are
called Color Stops. A Color Stop comprises:

• a Color (see how to represent Colors above)
• an offset in the Gradient, between 0 and 1, respectively start and end of the Gradient

A Gradient Object can be kept in a project variable for later re-use (assignment as a fill/stroke
style, adding color stops, etc). Also note that a Gradient Object is not tied to a specific Canvas
object, it can be used for several canvasses.

Function Description Notes

canvas_createLinearGradient(x1, y1, x2, y2)
create and return a linear Gradient
Object that starts at position (x1, y1)
and ends at position (x2, y2)

canvas_createRadialGradient(x1, y1, r1, x2, y2,
r2)

create a radial Gradient Object, that
starts at position (x1, y1) with radius r1,
and ends at position (x2, y2) with
radius r2

see Canvas HTML
spec for a description of
how radial gradients are
drawn

canvas_gradient_addColorStop(gradient, offset,
color)

add Color Stop to Gradient
Object gradient, with value color at
offset offset

Paths	

A Canvas Path contains one or more Subpaths. A Subpath is list of connected 2D points. A
Subpath can be closed, i.e the final point is connected to the first, or unclosed. A Path can be
used to:

• perform drawing operations (fill, stroke)
• create hit regions
•

A Canvas object automatically comes with one Path, which is known as the Default Path. All Path
editing functions will perform operations on the Canvas's Default Path, if their first argument is the
Canvas object. When clearing the Canvas's content, which is typically done at each frame, the
Canvas's Default Path is cleared of all its Subpaths.

Alternatively, one can create any number of Path objects, which are not necessarily tied to a
Canvas object in particular. They can be stored in Parser variables and referenced later for
various tasks. When passing a Path object as the first argument to a Path editing function, the
function will perform its action on that Path.

One will generally use Path Objects instead of the Canvas's Default Path, when a Path's
construction necessitates to call a lot Path editing functions. Those functions can be called just
once, and the Path can be stored in a variable and used later. Using the Canvas's Default Path
will generally mean "reconstructing" it every time it is needed (for instance before filling or
stroking it at each frame).

IMPORTANT: a Path is distinct from the pixels displayed in a Canvas. Instead, Paths can be
used to perform drawing operations that will in turn modify the pixels displayed in a Canvas.

Path	
 creation	

Function Description
canvas_beginPath(canvas) clear all existing Subpaths of canvas's Default Path

canvas_createPath() create and return a new Path Object

Path	
 editing	

All these functions can perform their action on either:

• a Canvas' Default Path, if a Canvas is passed as the first argument
• any Path Object, if a Path Object is passed as the first argument

Function Description Notes

canvas_moveTo(c, x, y)
add a Subpath to the Canvas's Default Path or
Path Object, with the first point positioned at
coordinates (x,y)

canvas_lineTo(c, x, y) edit last Subpath of Canvas's Default Path or Path
Object, by adding a point at (x,y)

if no Subpath exists, this
does the same as
canvas_moveTo

canvas_bezierCurveTo(c, x1, y1,
x2, y2, x3, y3)

edit last Subpath of Canvas's Default Path or Path
Object, by adding points that form a Bezier Curve,
from its last point (x,y) to (x3,y3), with control
points (x1,y1) and (x2,y2)

if no Subpath exists, a
Subpath is created
beforehand with its first point
at (x1, y1)

canvas_arcTo(c, x1, y1, x2, y2, r)

edit last Subpath of Canvas's Default Path or Path
Object, by adding points that form an Arc of radius
r, from its last point (x,y) to (x2,y2), with (x1,y1) as
a guide point

canvas_closePath(c) close last Subpath of Canvas's Default Path or
Path Object

canvas_rect(c, x, y, width, height)

add a closed Subpath to the Canvas's Default
Path or Path Object, containing 4 connected points
that form a rectangle of origin (x,y) and size
(width,height)

 canvas_arc(c, x, y, r, start, end,
ccw)

create an Arc of center (x,y), radius r,
from start to end in radians, couter-clockwise if
ccw is 1, clockwise otherwise, and either connect it
to the last point of the last Subpath, or in a new
Subpath if none already exists

Path	
 drawing	

A Canvas's Default Path or a Path Object can be used to perform drawing operations in a
Canvas.
Function Description

canvas_stroke(c) apply the current Canvas (c) transformation to the c's Default Path and stroke the result
with the c's stroking style, drawing into c

canvas_strokePath(c,
path)

apply the current Canvas (c) transformation to path and stroke the result with the
current c's stroking style, drawing into c

canvas_fill(c) apply the current Canvas (c) transformation to the c's Default Path and fill the result with
the c's filling style, drawing into c

canvas_fillPath(c, path) apply the current Canvas (c) transformation to path and fill the result with the current c's
filling style, drawing into c

Path	
 utility	
 functions	

Function Description Notes

canvas_isPointInPath(c,
x, y)

test if point (x, y) is contained inside a Path, and return 1/0
accordingly: if c is a Canvas, the test is made against the Canvas
Default Path, if c is a Path Object the test is made on that

Canvas current
transform does not
apply here

Text	
 drawing	

One can draw into the Canvas using text instead of path filling / stroking. Text drawing is affected
by the font size and alignment options which are part of the Canvas State.
Function Description Notes

canvas_fillText(c, text, x,
y, maxWidth)

fill text string using current fill style, font size and alignment, from
position (x, y) affected by current transform, with maxWidthused as
the maximum text width

maxWidth is ignored
if 0 or negative

Fast	
 drawing	
 functions	

Those functions draw rapidly into the Canvas without using any Paths.

Function Description

canvas_fillRect(c, x, y, width, height) fill a rectangle at origin (x, y) of size (width, height), using current transform
and fill style

canvas_strokeRect(c, x, y, width,
height)

stroke a rectangle at origin (x, y) of size (width, height), using current transform
and stroke style

Controlling	
 Canvas	
 refresh	
 rate	

By default, the Canvas is set up to refresh at all frames. This means all Lemur scripts with trigger
"On Redraw" will be called at each frame.

Canvas objects can optionally be set up to refresh on-demand only. In that case, Lemur scripts
with trigger "On Redraw" will only be called if the canvas_refresh(c) function was called earlier
during that frame.

Function Description Notes

canvas_refresh(c) request all scripts set to trigger "On Redraw" for
Canvas c to be called in that frame

this function does not perform anything if
Canvas is set to draw "Always"

Hit	
 Regions	

Hit Regions are regions of pixels in a Canvas associated with an integer identifier. If a Canvas is
touch-enabled, whenever a cursor enters a Hit Region, the corresponding Hit Region identifier will
be sent as an argument to any Lemur Scripts attached to trigger "On Cursor Down / Move / Up".

Any number of Hit Regions can be added to a Canvas, with distinct identifiers. Adding a Hit
Region with a identifier already attached to another Hit Region will destroy the old one and
replace it with the new one. Hit Regions will also be destroyed when
calling canvas_clear or canvas_clearRect.

Function Description

canvas_addHitRegion(c,
path, id)

add a Hit Region to Canvas c, with identifier id, replacing any known Hit Region with that
identifier. if path is a non-null existing Path Object, it is used to specify the position and
geometry of the Hit Region, otherwise the Canvas' Default Path is used for that

 	

SEQUENCER	
 OBJECTS	

Overview	

Lemur 5.0 introduces many new objects and functions to help you create step sequencers. There
are three new objects: StepNote, StepSwitch and StepSlider. Each of these is suitable for a
particular approach to sequencing. You can find the new objects in the Lemur Editor’s object
palette, or from the object drop-down menu of the In-App Editor. A new type of script execution,
On Clock, lets you trigger events in sync to a musical subdivision. This type of script is available
anywhere in your template, simply create a new script in Lemur Editor and select ‘On Clock’ as
the execution type. Finally, nearly a dozen new scripting functions give you precise control, up to
8 independent clocks with independent bpm and transport states.

Timing	
 and	
 Framerates	

Generally speaking, MIDI and OSC messages are tied to the Lemur app’s framerate. Whereas a
simple template might run at 60 fps, a very complex template might run only at 35 fps. MIDI and
OSC messages are sent once per frame. For most parameter control situations, this is sufficient.
In the case of sequencing, however, higher timing accuracy is necessary. To overcome this
limitation, we’ve created a special internal system that can handle MIDI data with much higher
timing accuracy. The sequencing objects and On Clock scripts both use this system to send
messages exactly when they are scheduled, rather than waiting for the next frame.

Clock	

There are eight clocks available in Lemur, one corresponding to each MIDI target. Each clock can
operate as an internal master, or slave to an external signal. Sending MIDI clock from Lemur is
not supported.

Clocks in slave mode are hard-coded to listen to a MIDI Target, for example clock 3 in slave
mode will expect a MIDI clock coming in on MIDI Target 3. In the vast majority of cases, you’ll
typically use just one clock and therefore work with MIDI Target 0.

The Slave Clocks to MIDI option is available in the settings screen of the Lemur app.

Transport	

Transport (start, stop, reset, bpm) is access through scripting functions. These functions are
listed in the Lemur Editor, at the very bottom of the PROJECT window you can the Internal folder
where all internal Lemur functions are listed. You can also find details in the parser reference,
further down in this document.

Several templates bundled with Lemur 5.0 have a handy Container with objects and scripts
already made to control the transport. “iPad – MonoSequencer” has a vertical transport Container
and “iPad – Drum Sequencer” has a horizontal layout. You can copy these transport Containers

into your own templates, or create your own from scratch.

Transport is always clock-dependant. That means that any sequencer object (StepNote,
StepSwitch, StepSlider) will stop, start, reset in sync with the clock. Sequencer objects do not
independenty start or stop, they always follow the clock state.

On	
 Clock	
 scripts	

Lemur 5.0 introduces a new way to trigger scripts. Execution can now be set to “On Clock”, you
will be able to choose which Clock (0-8) and a musical subdivision. Any MIDI/OSC messages
sent from this script will be in sync with the clock. Generally speaking, any Manual scripts called
from the On Clock will also be processed in sync with the clock.

On Clock scripts are useful if you want to send messages at a specific musical time, or if you
want to build your own sequencer templates from scratch.

Parser	
 Reference	

Following is a list of relevant scripting functions from the Clock folder. The ‘target’ in the
arguments always refers to which of the eight clocks you’re manipulating.

clock_getbeats(target) returns a float with the current beat position
clock_getbpm(target) returns the current tempo in beats per minutes (bpm)
clock_isrunning(target) returns the state of the clock (running/stopped)
clock_pause(target) stop the clock without resetting the beat position
clock_reset(target) reset the beat position without interrupting playback
clock_setbpm(target, bpm) set the tempo (bpm)
clock_setoffset(target, ms) adjust the phase (offset) of the clock in milliseconds
clock_start(start) start the clock
clock_stop(target) stop the clock

Custom	
 MIDI	

Custom MIDI functions not benefit from the sequencer system, regardless of where you create
them. For tight sequencing, use the built-in variables and properties of sequencer objects
(StepNote, StepSwitch, StepSlider), or use On Clock scripts.

StepSwitch	

Overview	

StepSwitch is based on the Switches object. It is best suited as a drum/trigger sequencer. It is an
array of two-state buttons. There are a couple key differences explained below that distinguish
StepSwitch from Switches.

Layout	

Unlike Switches, where the layout of the object is defined in rows and columns, StepSwitch is
defined in steps and rows. This means that you can very easily switch between a traditional x0x-
style step sequencer, to a more modern 4x4 grid. It’s as easy as setting the number of rows from
1 to 4.

It also means that you can work with odd number of rows/steps without worrying about the layout
alignment. It’s much easier to just try this it out and see for yourself rather than trying to explain
this. For example, set a StepSwitches object to 15 steps and 3 rows and see what happens.

Variables	

x
A list of the on-off values of the switches in the object. The list goes from top-left to bottom-right.

step
As the clock is running, the switches light up one after the other. The step variable tells you
precisely which step is active right now.

out
The out variable sends out the value of the current step. Map this variable to use StepSwitch as a
sequencer. You can map the out variable to an OSC/MIDI message in the Lemur Editor’s
standard MAPPING window.

For example, map the out variable of a StepSwitch to a Note On message. By default, pitch will
be set to 60. You now have a single lane sequencer which will send a MIDI Note 60 on every
active step. Assigning the x variable MultiSlider to the ‘value’ property of StepSwitch (i.e seting
pitch = MultiSlider.x) will let you control the velocity for each step.

Properties	

Name Name of the object, also used as its default OSC address.
Label If checked, the Object’s name is displayed in the Interface.
Clock Selects which clock this object follows.
Steps Number of steps in the sequence and number of steps displayed. (1 to 64)
Rows Number of rows into which the steps are divided. (1 to 32)
Division Musical subdivision per step
value Off steps zero, On steps are scaled to this value. (expression)
length Length of each step, as a ratio of the Division. (expression)
legato If enabled, out value will not go to zero before stepping to next switch. If legato is
enabled on any given step, this will supersede the length setting for that step. (expression)
swing Swing value for the entire sequence. Arrays are ignored, only the first value is set to be
the global swing for the whole pattern. (expression)
Free Run Disables phase reset for all parameters. (expression)

Color Off Color for the object’s off state
Color On Color for the object’s on state

Behaviour	

Capture
If Capture is checked, an Object will only react to cursors that were created inside its area. Even
if the cursor later leaves the Object for another position, it will remain in control of the original
Object, until it is destroyed eventually. When Capture is off, an Object will react to whatever
cursor is present at any moment in its area.

Paint
If this flag is active, you can “paint” on an array of switches by dragging your finger around. If
paint is inactive, a touch only toggles the switch you hit first and dragging the finger around has
no further effect.

Attributes	

capture 0 or 1 capture off/on
clock 0 to 7 select which clock this object follows
color {integer*,integer*} color off state, color on state
div integer set musical subdivision for all steps (valid settings are
1,2,3,4,6,8,12,16,24,32,48,64)
free_run 0 or 1 enable or disabled free run mode (ignore parameter phase
resets)
label 0 or 1 label off/on
name text get object name
paint 0 or 1 paint off/on
parameters_phase int get number of steps elapsed since clock start
rect {X,Y,W,H} object’s position and dimensions
row 1 to 32 number of rows
steps 1 to 64 number of steps

	

StepNote	

Overview	

StepNote appears identical to StepSwitch but it has very differences different. Whereas
StepSwitch and StepSlider both use the standard Lemur MIDI/OSC mapping system (i.e. in the
Lemur Editor MAPPING Window), StepNote handles MIDI mapping in a special way. StepNote
handles MIDI mapping internally, as part of object properties. This opens up the door to a very
fast and easy way to create custom sequencers.

When you load a StepNote object in the Lemur Editor, have a look at the OBJECTS window,

PROPERTIES tab. See screenshot below.

Unlike the standard MAPPING window, this lets you use an expression for all the aspects of
MIDI note generation(pitch, velocity, channel, length, legato, switch). An expression can be a
constant, an array, a function, or even a reference to another variable. For example you could set
pitch=MultiSlider.x, and thus dynamically control the pitch of every step in the StepNote object
with the sliders in the MultiSlider.

Variables	

x
A list of the on-off values of the cells in the object. The list goes from top-left to bottom-right.

step
A single integer indicating the currently active step. As the clock is running, the cells light up one
after the other. The step variable tells you precisely which step is active right now.

Properties	

Name Name of the object, also used as its default OSC address.
Label If checked, the object’s name is displayed in the Interface.
Target Select MIDI Target used by the object
Clock Selects which clock this object follows.
Steps Number of steps in the sequence and number of steps displayed. (1 to 64)
Rows Number of rows into which the steps are divided. (1 to 32)
Division Musical subdivision per step
pitch Set pitch (expression)
velocity Set velocity (expression)
channel Set MIDI channel (expression)
length Length of each step, as a ratio of the Division. (expression)
legato If enabled, out value will not go to zero before stepping to next switch. If legato is
enabled on any given step, this will supersede the length setting for that step. (expression)
swing Swing value for the entire sequence. (expression)
Free Run Disables phase reset for all parameters. (expression)
Color Off Color for the object’s off state
Color On Color for the object’s on state

Behaviour	

Capture
If Capture is checked, an Object will only react to cursors that were created inside its area. Even
if the cursor later leaves the Object for another position, it will remain in control of the original
Object, until it is destroyed eventually. When Capture is off, an Object will react to whatever
cursor is present at any moment in its area.

Paint
If this flag is active, you can “paint” on an array of switches by dragging your finger around. If
paint is inactive, a touch only toggles the switch you hit first and dragging the finger around has
no further effect.

Attributes	

capture 0 or 1 capture off/on
clock 0 to 7 select which clock this object follows
color {integer*,integer*} color off state, color on state
div integer set musical subdivision for all steps (valid settings are
1,2,3,4,6,8,12,16,24,32,48,64)
free_run 0 or 1 enable or disabled free run mode (ignore parameter phase
resets)
label 0 or 1 label off/on
name text get object name
paint 0 or 1 paint off/on
parameters_phase int get number of steps elapsed since clock start

rect {X,Y,W,H} object’s position and dimensions
row 1 to 32 number of rows
steps 1 to 64 number of steps
target 0 to 7 select MIDI Target used by the object

	

StepSlider	

Overview	

StepSlider is based on the MultiSlider object. It is best suited as a parameter/CC sequencer. It is
an array of sliders that follows a clock and sends out data for each slider in time.

Variables	

x
A list of the vertical positions of all the individual sliders.

step
A single integer indicating the index of the current step. As the clock is running, the sliders light
up one after the other. The step variable tells you which step is active right now.

out
A single value indicating the value of the active slider. Map this variable to use StepSlider as a
sequencer. You can map the out variable to an OSC/MIDI message in the Lemur Editor’s
standard MAPPING window.

For example, map the out variable of a StepSlider to a Control Change message. By default,
controller will be set to 0. You now have a single lane sequencer which will send a CC0 message
on every step, with the value corresping to the vertical position of the slider on that step.

Properties	

Name Name of the object, also used as its default OSC address.
Label If checked, the object’s name is displayed in the Interface.
Clock Selects which clock this object follows.
Steps Number of sliders in the sequence. (1 to 64)
Division Musical subdivision per slider
ramp Amount of slew between sliders. (expression)
Color Set the color of the object

Behaviour	

Grid
If checked, the range of values produced by the Sliders is quantized into [grid] steps. The
maximum number of steps for the Fader is 33.

Capture

If Capture is checked, an Object will only react to cursors that were created inside its area. Even
if the cursor later leaves the Object for another position, it will remain in control of the original
Object, until it is destroyed eventually. When Capture is off, the old school way from previous
versions is restored, meaning an Object will react to whatever cursor is present at any moment in
its area.

Attributes	

capture 0 or 1 capture off/on
clock 0 to 7 select which clock this object follows
color {integer*,integer*} color off state, color on state
div integer set musical subdivision for all steps (valid settings are
1,2,3,4,6,8,12,16,24,32,48,64)
grid 0 or 1 grid off/on
grid_steps 1 to 33 number of grid steps
label 0 or 1 label off/on
name text get object name
rect {X,Y,W,H} object’s position and dimensions
steps 1 to 64 number of steps

NEW	
 IN	
 LEMUR	
 5.0	

String	
 Concatenation	

It is now possible to construct strings through concatenation. For example, the following produces
the string ‘Fader2’:

decl i = 2;
decl name = "Fader" + i;

Referencing	
 child	
 objects	

Function Description

findchild(object,name) object must point to a valid object, name is a string for the child object name. Returns a
reference to the found child, or zero if unfound.

Example:

decl i = 2;
decl name = ‘Fader’ + i; // this produces the string "Fader2"
decl object = findchild(aContainer, name); // this obtains aContainer.Fader2

